An Adaptive Finite Element Method for the Diffraction Grating Problem with PML and Few-Mode DtN Truncations

The diffraction grating problem is modeled by a Helmholtz equation with PML boundary conditions. The PML is truncated by some few-mode Dirichlet to Neumann boundary conditions so that those Fourier modes that cannot be well absorbed by the PML pass through without reflections. Convergence of the truncated PML solution is proved, whose rate is exponential with respect to the PML parameters and uniform with respect to all modes. An a posteriori error estimate is derived for the finite element discretization. The a posteriori error estimate consists of two parts, the finite element discretization error and the PML truncation error which decays exponentially with respect to the PML parameters and uniformly with respect to all modes. Based on the a posteriori error control, a finite element adaptive strategy is established for the diffraction grating problem, such that the PML parameters are determined through the PML truncation error and the mesh elements for local refinements are marked through the finite element discretization error. Numerical experiments are presented to illustrate the competitive behavior of the proposed adaptive algorithm.

[1]  T. Gaylord,et al.  Analysis and applications of optical diffraction by gratings , 1985, Proceedings of the IEEE.

[2]  J. Allen Cox,et al.  Mathematical studies in rigorous grating theory , 1995 .

[3]  Christian Kreuzer,et al.  Quasi-Optimal Convergence Rate for an Adaptive Finite Element Method , 2008, SIAM J. Numer. Anal..

[4]  W. Dörfler A convergent adaptive algorithm for Poisson's equation , 1996 .

[5]  Joseph E. Pasciak,et al.  Analysis of a finite PML approximation for the three dimensional time-harmonic Maxwell and acoustic scattering problems , 2006, Math. Comput..

[6]  H. Lezec,et al.  Extraordinary optical transmission through sub-wavelength hole arrays , 1998, Nature.

[7]  Haijun Wu,et al.  An Adaptive Finite Element Method with Perfectly Matched Absorbing Layers for the Wave Scattering by Periodic Structures , 2003, SIAM J. Numer. Anal..

[8]  Ricardo H. Nochetto,et al.  Data Oscillation and Convergence of Adaptive FEM , 2000, SIAM J. Numer. Anal..

[9]  Lifeng Li,et al.  Oblique-coordinate-system-based Chandezon method for modeling one-dimensionally periodic, multilayer, inhomogeneous, anisotropic gratings , 1999 .

[10]  Zhiming Chen,et al.  On the Efficiency of Adaptive Finite Element Methods for Elliptic Problems with Discontinuous Coefficients , 2002, SIAM J. Sci. Comput..

[11]  Avner Friedman,et al.  The time-harmonic maxwell equations in a doubly periodic structure , 1992 .

[12]  Yanzhao Cao,et al.  Numerical solution of diffraction problems by a least-squares finite element method , 2000 .

[13]  Wolfgang Dahmen,et al.  Adaptive Finite Element Methods with convergence rates , 2004, Numerische Mathematik.

[14]  Weiying Zheng,et al.  Convergence of the Uniaxial Perfectly Matched Layer Method for Time-Harmonic Scattering Problems in Two-Layered Media , 2010, SIAM J. Numer. Anal..

[15]  Roger Petit,et al.  Electromagnetic theory of gratings , 1980 .

[16]  Jian-Ming Jin,et al.  Complex coordinate stretching as a generalized absorbing boundary condition , 1997 .

[17]  Jean-Pierre Berenger,et al.  A perfectly matched layer for the absorption of electromagnetic waves , 1994 .

[18]  Gang Bao,et al.  An Adaptive Finite Element Method for the Diffraction Grating Problem with Transparent Boundary Condition , 2015, SIAM J. Numer. Anal..

[19]  Ricardo H. Nochetto,et al.  Convergence of Adaptive Finite Element Methods for General Second Order Linear Elliptic PDEs , 2005, SIAM J. Numer. Anal..

[20]  M. Neviere,et al.  Sur Une Nouvelle Methode De Resolution Du Probleme De La Diffraction D'une Onde Plane Par Un Reseau Infiniment Conducteur , 1971 .

[21]  Daniel Maystre,et al.  Multicoated gratings: a differential formalism applicable in the entire optical region , 1982 .

[22]  Lifeng Li Formulation and comparison of two recursive matrix algorithms for modeling layered diffraction gratings , 1996 .

[23]  Habib Ammari,et al.  Maxwell's equations in periodic chiral structures , 2003 .

[24]  Haijun Wu,et al.  Adaptive finite-element method for diffraction gratings. , 2005, Journal of the Optical Society of America. A, Optics, image science, and vision.

[25]  Gang Bao,et al.  Mathematical Modeling in Optical Science , 2001, Mathematical Modeling in Optical Science.

[26]  Rob P. Stevenson,et al.  Optimality of a Standard Adaptive Finite Element Method , 2007, Found. Comput. Math..

[27]  Gang Bao,et al.  Finite element approximation of time harmonic waves in periodic structures , 1995 .

[28]  Gang Bao,et al.  Convergence Analysis of the Perfectly Matched Layer Problemsfor Time-Harmonic Maxwell's Equations , 2005, SIAM J. Numer. Anal..

[29]  G. Bao Numerical analysis of diffraction by periodic structures: TM polarization , 1996 .

[30]  T. Gaylord,et al.  Diffraction analysis of dielectric surface-relief gratings , 1982 .

[31]  Natacha H. Lord,et al.  A dual weighted residual method applied to complex periodic gratings , 2013, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[32]  L. R. Scott,et al.  Finite element interpolation of nonsmooth functions satisfying boundary conditions , 1990 .

[33]  Zhiming Chen,et al.  An adaptive perfectly matched layer technique for 3-D time-harmonic electromagnetic scattering problems , 2007, Math. Comput..

[34]  Ivo Babuška,et al.  Lectures on mathematical foundations of the finite element method. , 1972 .

[35]  S. S. Wang,et al.  Multilayer waveguide-grating filters. , 1995, Applied optics.

[36]  Gang Bao,et al.  An adaptive edge element method with perfectly matched absorbing layers for wave scattering by biperiodic structures , 2010, Math. Comput..

[37]  David C. Dobson,et al.  Optimal design of periodic antireflective structures for the Helmholtz equation , 1993, European Journal of Applied Mathematics.

[38]  W. Rheinboldt,et al.  Error Estimates for Adaptive Finite Element Computations , 1978 .

[39]  Habib Ammari,et al.  Low-Frequency Electromagnetic Scattering , 2000, SIAM J. Math. Anal..

[40]  Zhiming Chen,et al.  An Adaptive Perfectly Matched Layer Technique for Time-harmonic Scattering Problems , 2005 .

[41]  Matti Lassas,et al.  On the existence and convergence of the solution of PML equations , 1998, Computing.