Isolated d-f pairs in supramolecular complexes with tunable structural and electronic properties

The use of predisposed segmental ligands in multi-component self-assembly processes allows the preparationof triple-helical heterodimetallic d–f complexes in whicheach pair of metal ions is isolated and protected fromexternal interactions. The selection of the programmedheterodimetallic edifice within the ‘dynamic virtual library’arising from the mixture of the reacting componentsrelies on a judicious matching between the stereochemicalpreferences of the metal ions and the binding abilities of thereceptors combined with a reliable characterisation of the

[1]  F. Dahan,et al.  Influence of anionic ligands (X) on the nature and magnetic properties of dinuclear LCuDgX3.nH2O complexes (LH2 standing for tetradentate Schiff base ligands deriving from 2-hydroxy-3-methoxybenzaldehyde and X being Cl, N3C2, and CF3COO). , 2000, Inorganic chemistry.

[2]  F. Dahan,et al.  Is ferromagnetism an intrinsic property of the CuII/GdIII couple? 1. Structures and magnetic properties of two novel dinuclear complexes with a mu-phenolato-mu-oximato (Cu,Gd) core. , 2000, Inorganic chemistry.

[3]  D. Hibbs,et al.  Coaggregation of paramagnetic d- and f-block metal ions with a podand-framework amine phenol ligand. , 2000, Inorganic chemistry.

[4]  J. Bünzli,et al.  Lanthanide Helicates Self-Assembled in Water: A New Class of Highly Stable and Luminescent Dimetallic Carboxylates , 1999 .

[5]  C. Mathonière,et al.  Nature of the Interaction between Ln(III) and Cu(II) Ions in the Ladder-Type Compounds {Ln(2)[Cu(opba)](3)}.S (Ln = Lanthanide Element; opba = ortho-Phenylenebis(oxamato), S = Solvent Molecules). , 1999, Inorganic chemistry.

[6]  Kenneth N. Raymond,et al.  Supermolecules by Design , 1999 .

[7]  R. Thummel,et al.  Influence of charge-transfer states on the Eu(III) luminescence in mononuclear triple helical complexes with tridentate aromatic ligands , 1999 .

[8]  H. Adams,et al.  1H NMR in Solution and Solid State Structural Study of Lanthanide(III) Cryptates , 1999 .

[9]  V. Pecoraro,et al.  The Preparation, Characterization, and Magnetism of Copper 15-Metallacrown-5 Lanthanide Complexes. , 1999, Inorganic chemistry.

[10]  J. Lisowski,et al.  Heterodinuclear Macrocyclic Complexes Containing Both Nickel(II) and Lanthanide(III) Ions. , 1999, Inorganic chemistry.

[11]  P. A. Vigato,et al.  Functionalized acyclic Schiff bases and related complexes with d- and f-metal ions , 1998 .

[12]  S. Decurtins,et al.  MOLECULAR CHROMIUM(III)-LANTHANIDE(III) COMPOUNDS (LN = LA, CE, PR, ND) WITH A POLYMERIC, LADDER-TYPE ARCHITECTURE : A STRUCTURAL AND MAGNETIC STUDY , 1998 .

[13]  J. F. Stoddart,et al.  Self-assembling supermolecules and supramolecular arrays based on metal coordination , 1998 .

[14]  G. Bernardinelli,et al.  Lanthanide‐Assisted Self‐Assembly of an Inert, Metal‐Containing Nonadentate Tripodal Receptor , 1998 .

[15]  J. Bünzli,et al.  Self-Assembled Dinuclear Lanthanide Helicates: Substantial Luminescence Enhancement upon Replacing Terminal Benzimidazole Groups by Carboxamide Binding Units. , 1998, Inorganic chemistry.

[16]  F. Dahan,et al.  Homo- (4f, 4f) and Heterodimetallic (4f, 4f') Complexes. The First Structurally Characterized Example of a Heterodimetallic (Yb, La) Complex (1'). Magnetic Properties of 1' and of a Homodinuclear (Gd, Gd) Analogue. , 1998, Inorganic chemistry.

[17]  J. Bünzli,et al.  Stability and Size-Discriminating Effects in Mononuclear Lanthanide Triple-Helical Building Blocks with Tridentate Aromatic Ligands. , 1997, Inorganic chemistry.

[18]  Gérald Bernardinelli,et al.  Helicates as Versatile Supramolecular Complexes. , 1997, Chemical reviews.

[19]  F. Dahan,et al.  A General Route to Strictly Dinuclear Cu(II)/Ln(III) Complexes. Structural Determination and Magnetic Behavior of Two Cu(II)/Gd(III) Complexes. , 1997, Inorganic chemistry.

[20]  S. Rowan,et al.  Automated recognition, sorting, and covalent self-assembly by predisposed building blocks in a mixture , 1997 .

[21]  O. Kahn,et al.  Design and Magnetic Properties of a Magnetically Isolated GdIIICuII Pair. Crystal Structures of [Gd(hfa)3Cu(salen)], [Y(hfa)3Cu(salen)], [Gd(hfa)3Cu(salen)(Meim)], and [La(hfa)3(H2O)Cu(salen)] [hfa = Hexafluoroacetylacetonato, salen = N,N‘-Ethylenebis(salicylideneaminato), Meim = 1-Methylimidazole] , 1997 .

[22]  G. Bernardinelli,et al.  Lanthanide Podates with Predetermined Structural and Photophysical Properties: Strongly Luminescent Self-Assembled Heterodinuclear d−f Complexes with a Segmental Ligand Containing Heterocyclic Imines and Carboxamide Binding Units , 1996 .

[23]  C. Piguet Toward Programmed Molecular Lanthanide Probes and Sensors , 1996, CHIMIA.

[24]  F. Dahan,et al.  A Genuine Example of a Discrete Bimetallic (Cu, Gd) Complex: Structural Determination and Magnetic Properties. , 1996, Inorganic chemistry.

[25]  Jurriaan Huskens,et al.  Lanthanide induced shifts and relaxation rate enhancements , 1996 .

[26]  J. Bünzli,et al.  Molecular magnetism and iron(II) spin-state equilibrium as structural probes in heterodinuclear d-f complexes , 1995 .

[27]  J. Bünzli,et al.  Structural and photophysical properties of pseudo-tricapped trigonal prismatic lanthanide building blocks controlled by zinc(II) in heterodinuclear d-f complexes , 1995 .

[28]  J. Harrowfield,et al.  Synthetic, Structural, and Spectroscopic Studies on Solids Containing Tris(dipicolinato) Rare Earth Anions and Transition or Main Group Metal Cations , 1995 .

[29]  P. A. Vigato,et al.  From mononuclear to polynuclear macrocyclic or macroacyclic complexes , 1995 .

[30]  D. Koshland The Key–Lock Theory and the Induced Fit Theory , 1995 .

[31]  O. Schaad,et al.  Self-Assembly of Heteronuclear Supramolecular Helical Complexes with Segmental Ligands , 1994 .

[32]  D. Metcalf,et al.  Chirality-dependent intermolecular interactions probed by time-resolved chiroptical luminescence measurements of enantio-differential excited-state quenching kinetics , 1993 .

[33]  G. Bernardinelli,et al.  Self-assembly and photophysical properties of lanthanide dinuclear triple-helical complexes , 1993 .

[34]  S. Meskers,et al.  Thermodynamics of the enantioselective quenching of tris(2,6-pyridinedicarboxylate)terbate(3-) luminescence by resolved tris(1,10-phenanthroline)ruthenium(2+) , 1993 .

[35]  J. Trombe,et al.  Crystal structure and magnetic properties of [Ln2Cu4] hexanuclear clusters (where Ln = trivalent lanthanide). Mechanism of the gadolinium(III)-copper(II) magnetic interaction , 1993 .

[36]  G. Bernardinelli,et al.  Self-assembly of double and triple helices controlled by metal ion stereochemical preference , 1992 .

[37]  G. Bernardinelli,et al.  Structural and photophysical properties of lanthanide nitrate 1:1 complexes with planar tridentate nitrogen ligands analogous to 2,2':6',2''-terpyridine , 1992 .

[38]  S. Snyder,et al.  Chiral recognition between dissymmetric Ln(dpa)33- and cobalt(III)-nucleotide complexes in aqueous solution. Enantioselective luminescence quenching as a probe of intermolecular chiral discrimination , 1992 .

[39]  Masayuki Hashimura,et al.  Ferromagnetic Spin-Coupling between Gadolinium(III) and Copper(II) Ions in Discrete Binuclear Gd(III)–Cu(II) Complexes , 1991 .

[40]  Jonathan S. Lindsey,et al.  Self-Assembly in Synthetic Routes to Molecular Devices. Biological Principles and Chemical Perspectives: A Review , 1991 .

[41]  S. Snyder,et al.  Chiral discrimination in electronic energy-transfer processes between dissymmetric metal complexes in solution. Time-resolved chiroptical luminescence measurements of enantioselective excited-state quenching kinetics , 1990 .

[42]  A. Caneschi,et al.  Synthesis, crystal structure, and magnetic properties of tetranuclear complexes containing exchange-coupled dilanthanide-dicopper(lanthanide = gadolinium, dysprosium) species , 1990 .

[43]  Joop A. Peters Analysis of multinuclear lanthanide-induced shifts. 4. Some consequences of the lanthanide contraction , 1986 .

[44]  K. Raymond,et al.  Ferric ion sequestering agents. 14. 1-Hydroxy-2(1H)-pyridinone complexes: properties and structure of a novel iron-iron dimer , 1985 .

[45]  Frederick S. Richardson,et al.  Terbium(III) and europium(III) ions as luminescent probes and stains for biomolecular systems , 1982 .

[46]  W. Horrocks,et al.  Lanthanide ion luminescence probes of the structure of biological macromolecules , 1981 .

[47]  L. Stryer,et al.  Exchange interaction contribution to energy transfer between ions in the rapid-diffusion limit , 1981 .

[48]  R. Hill,et al.  Active site of bovine galactosyltransferase: kinetic and fluorescence studies. , 1980, Biochemistry.

[49]  R. D. Shannon Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides , 1976 .

[50]  C. KaLuk Study of the nature of the metal-binding sites and estimate of the distance between the metal-binding sites in transferrin using trivalent lanthanide ions as fluorescent probes. , 1971 .

[51]  J. Bünzli,et al.  Mono- and polymetallic lanthanide-containing functional assemblies: a field between tradition and novelty , 1999 .

[52]  O. Kahn Magnetism of Heterobimetallics: Toward Molecular-Based Magnets , 1995 .

[53]  R. M. Golding,et al.  A theoretical study of the 14N and 17O N.M.R. shifts in lanthanide complexes , 1972 .

[54]  J. Hicks,et al.  The Transition Metals , 1971 .