A Corner Cutting Algorithm for Evaluating Rational B[e-acute]zier Surfaces and the Optimal Stability of the Basis

The usual method for evaluating rational Bezier surfaces uses the projection operator and the representation provided by the Bernstein basis. We prove the optimal stability of the basis used in this representation. We also propose an alternative method for evaluating rational surfaces through that representation. We show the stability properties of this last method and prove that it has better properties than other known methods from the point of view of avoiding underflow and overflow.

[1]  Juan Manuel Peña,et al.  On the optimal stability of bases of univariate functions , 2002, Numerische Mathematik.

[2]  Tony DeRose,et al.  Computing values and derivatives of Bézier and B-spline tensor products , 1995, Comput. Aided Geom. Des..

[3]  Rida T. Farouki,et al.  On the optimal stability of the Bernstein basis , 1996, Math. Comput..

[4]  Riesenfeld,et al.  Homogeneous Coordinates and Projective Planes in Computer Graphics , 1981, IEEE Computer Graphics and Applications.

[5]  Josef Hoschek,et al.  Fundamentals of computer aided geometric design , 1996 .

[6]  Wolfgang Dahmen,et al.  On Wachspress quadrilateral patches , 2000, Comput. Aided Geom. Des..

[7]  James Hardy Wilkinson,et al.  Rounding errors in algebraic processes , 1964, IFIP Congress.

[8]  Tom Lyche,et al.  Optimally Stable Multivariate Bases , 2004, Adv. Comput. Math..

[9]  Nicholas J. Higham,et al.  INVERSE PROBLEMS NEWSLETTER , 1991 .

[10]  L. L. Schumaker,et al.  Efficient evaluation of multivariate polynomials , 1986, Comput. Aided Geom. Des..

[11]  Juan Manuel Peña B-splines and optimal stability , 1997, Math. Comput..

[12]  J. M. Pena Error Analysis of Algorithms for Evaluating Bernstein-Bezier-Type Multivariate Polynomials , 2000 .

[13]  Panagiotis D. Kaklis,et al.  Convexity-preserving interpolatory parametric splines of non-uniform polynomial degree , 1995 .

[14]  Gerald Farin,et al.  Curves and surfaces for computer aided geometric design , 1990 .

[15]  Les A. Piegl,et al.  The NURBS Book , 1995, Monographs in Visual Communication.

[16]  Juan Manuel Peña,et al.  Error analysis of corner cutting algorithms , 2004, Numerical Algorithms.

[17]  James Hardy Wilkinson,et al.  The evaluation of the zeros of ill-conditioned polynomials. Part I , 1959, Numerische Mathematik.