An effective adaptive trust region algorithm for nonsmooth minimization

In this paper, an adaptive trust region algorithm that uses Moreau–Yosida regularization is proposed for solving nonsmooth unconstrained optimization problems. The proposed algorithm combines a modified secant equation with the BFGS update formula and an adaptive trust region radius, and the new trust region radius utilizes not only the function information but also the gradient information. The global convergence and the local superlinear convergence of the proposed algorithm are proven under suitable conditions. Finally, the preliminary results from comparing the proposed algorithm with some existing algorithms using numerical experiments reveal that the proposed algorithm is quite promising for solving nonsmooth unconstrained optimization problems.

[1]  I. Paulsen,et al.  Phenotypic Profiling of Scedosporium aurantiacum, an Opportunistic Pathogen Colonizing Human Lungs , 2015, PloS one.

[2]  Zhenjun Shi,et al.  A new trust region method for unconstrained optimization , 2008 .

[3]  Adil M. Bagirov,et al.  A Method for Minimization of Quasidifferentiable Functions , 2002, Optim. Methods Softw..

[4]  Masao Fukushima,et al.  A Globally and Superlinearly Convergent Algorithm for Nonsmooth Convex Minimization , 1996, SIAM J. Optim..

[5]  Masao Fukushima,et al.  trust region method for nonsmooth convex optimization , 2005 .

[6]  Masao Fukushima,et al.  A descent algorithm for nonsmooth convex optimization , 1984, Math. Program..

[7]  Claude Lemaréchal,et al.  Convergence of some algorithms for convex minimization , 1993, Math. Program..

[8]  F. Clarke Optimization And Nonsmooth Analysis , 1983 .

[9]  Boying Wu,et al.  A new modified nonmonotone adaptive trust region method for unconstrained optimization , 2012, Comput. Optim. Appl..

[10]  Reza Abazari,et al.  Numerical study of Burgers–Huxley equations via reduced differential transform method , 2013 .

[11]  Shengquan Wang,et al.  Nonmonotone adaptive trust region method , 2011, Eur. J. Oper. Res..

[12]  Liping Zhang,et al.  A new trust region algorithm for nonsmooth convex minimization , 2007, Appl. Math. Comput..

[13]  Johannes O. Royset,et al.  Algorithms for Finite and Semi-Infinite Min–Max–Min Problems Using Adaptive Smoothing Techniques , 2003 .

[14]  Andreas Kassler,et al.  Optimising for energy or robustness? Trade-offs for VM consolidation in virtualized datacenters under uncertainty , 2017, Optim. Lett..

[15]  Nicholas I. M. Gould,et al.  Trust Region Methods , 2000, MOS-SIAM Series on Optimization.

[16]  Jorge J. Moré,et al.  Benchmarking optimization software with performance profiles , 2001, Math. Program..

[17]  Guoyin Li,et al.  A modified Polak-Ribière-Polyak conjugate gradient algorithm for nonsmooth convex programs , 2014, J. Comput. Appl. Math..

[18]  Wenping Xiao,et al.  $$H_{\infty }$$H∞ filtering for discrete-time fuzzy stochastic neural networks with mixed time-delays , 2016 .

[19]  Xiwen Lu,et al.  A BFGS trust-region method for nonlinear equations , 2011, Computing.

[20]  Masoud Ahookhosh,et al.  An improved adaptive trust-region algorithm , 2017, Optim. Lett..

[21]  P. Neittaanmäki,et al.  Nonsmooth Optimization: Analysis and Algorithms with Applications to Optimal Control , 1992 .

[22]  Marko Mäkelä,et al.  Survey of Bundle Methods for Nonsmooth Optimization , 2002, Optim. Methods Softw..

[23]  M. Fukushima,et al.  Globally Convergent BFGS Method for Nonsmooth Convex Optimization1 , 2000 .

[24]  M. Reza Peyghami,et al.  A New Nonsmooth Trust Region Algorithm for Locally Lipschitz Unconstrained Optimization Problems , 2015, J. Optim. Theory Appl..

[25]  Luigi Grippo,et al.  A smooth method for the finite minimax problem , 1993, Math. Program..

[26]  M. Powell CONVERGENCE PROPERTIES OF A CLASS OF MINIMIZATION ALGORITHMS , 1975 .

[27]  Wenjie Liu,et al.  A Modified BFGS Formula Using a Trust Region Model for Nonsmooth Convex Minimizations , 2015, PloS one.

[28]  Ya-Xiang Yuan,et al.  A derivative-free trust-region algorithm for composite nonsmooth optimization , 2014, Computational and Applied Mathematics.

[29]  Hamid Esmaeili,et al.  A trust-region approach with novel filter adaptive radius for system of nonlinear equations , 2016, Numerical Algorithms.

[30]  Wenjie Liu,et al.  The Modified HZ Conjugate Gradient Algorithm for Large-Scale Nonsmooth Optimization , 2016, PloS one.

[31]  Boying Wu,et al.  A new trust region method with adaptive radius for unconstrained optimization , 2012, Optim. Methods Softw..

[32]  Liqun Qi,et al.  A nonsmooth version of Newton's method , 1993, Math. Program..

[33]  Gonglin Yuan,et al.  Gradient trust region algorithm with limited memory BFGS update for nonsmooth convex minimization , 2012, Computational Optimization and Applications.

[34]  Nonsmooth Optimization Algorithms , 1996 .

[35]  Liqun Qi,et al.  Convergence Analysis of Some Algorithms for Solving Nonsmooth Equations , 1993, Math. Oper. Res..

[36]  M. Powell A New Algorithm for Unconstrained Optimization , 1970 .

[37]  Gonglin Yuan,et al.  The Barzilai and Borwein Gradient Method with Nonmonotone Line Search for Nonsmooth Convex Optimization Problems , 2012 .

[38]  Liqun Qi,et al.  A trust region algorithm for minimization of locally Lipschitzian functions , 1994, Math. Program..

[39]  Jan Vlcek,et al.  A bundle-Newton method for nonsmooth unconstrained minimization , 1998, Math. Program..

[40]  Xingming Sun,et al.  Segmentation-Based Image Copy-Move Forgery Detection Scheme , 2015, IEEE Transactions on Information Forensics and Security.

[41]  Adil M. Bagirov,et al.  Introduction to Nonsmooth Optimization: Theory, Practice and Software , 2014 .

[42]  Morteza Kimiaei,et al.  A new adaptive trust-region method for system of nonlinear equations , 2014 .

[43]  Robert G. Parton,et al.  AarF Domain Containing Kinase 3 (ADCK3) Mutant Cells Display Signs of Oxidative Stress, Defects in Mitochondrial Homeostasis and Lysosomal Accumulation , 2016, PloS one.

[44]  A. Auslender Numerical methods for nondifferentiable convex optimization , 1987 .

[45]  Naum Zuselevich Shor,et al.  Minimization Methods for Non-Differentiable Functions , 1985, Springer Series in Computational Mathematics.

[46]  Guoyin Li,et al.  New quasi-Newton methods for unconstrained optimization problems , 2006, Appl. Math. Comput..

[47]  Li-Zhi Liao,et al.  An adaptive trust region method and its convergence , 2002 .

[48]  T. Steihaug The Conjugate Gradient Method and Trust Regions in Large Scale Optimization , 1983 .

[49]  Yi-gui Ou,et al.  An ODE-like nonmonotone method for nonsmooth convex optimization , 2016 .

[50]  Li Gai-di A Trust Region Method with Automatic Determination of the Trust Region Radius , 2006 .

[51]  Adil M. Bagirov,et al.  Introduction to Nonsmooth Optimization , 2014 .

[52]  Yong Li,et al.  A Modified Hestenes and Stiefel Conjugate Gradient Algorithm for Large-Scale Nonsmooth Minimizations and Nonlinear Equations , 2015, Journal of Optimization Theory and Applications.

[53]  Qunyan Zhou,et al.  Nonmonotone adaptive trust region method with line search based on new diagonal updating , 2015 .

[54]  J. Pang,et al.  A globally convergent Newton method for convex SC1 minimization problems , 1995 .