Ordinary and Partial Differential Equations: With Special Functions, Fourier Series, and Boundary Value Problems

Solvable Differential Equations.- Second-Order Differential Equations.- Preliminaries to Series Solutions.- Solution at an Ordinary Point.- Solution at a Singular Point.- Solution at a Singular Point (Cont'd.).- Legendre Polynomials and Functions.- Chebyshev, Hermite and Laguerre Polynomials.- Bessel Functions.- Hypergeometric Functions.- Piecewise Continuous and Periodic Functions.- Orthogonal Functions and Polynomials.- Orthogonal Functions and Polynomials (Cont'd.).- Boundary Value Problems.- Boundary Value Problems (Cont'd.).- Green's Functions.- Regular Perturbations.- Singular Perturbations.- Sturm-Liouville Problems.- Eigenfunction Expansions.- Eigenfunction Expansions (Cont'd.).- Convergence of the Fourier Series.- Convergence of the Fourier Series (Cont'd.).- Fourier Series Solutions of Ordinary Differential Equations.- Partial Differential Equations.- First-Order Partial Differential Equations.- Solvable Partial Differential Equations.- The Canonical Forms.- The Method of Separation of Variables.- The One-Dimensional Heat Equation.- The One-Dimensional Heat Equation (Cont'd.).- The One-Dimensional Wave Equation.- The One-Dimensional Wave Equation (Cont'd.).- Laplace Equation in Two Dimensions.- Laplace Equation in Polar Coordinates.- Two-Dimensional Heat Equation.- Two-Dimensional Wave Equation.- Laplace Equation in Three Dimensions.- Laplace Equation in Three Dimensions (Cont'd.).- Nonhomogeneous Equations.- Fourier Integral and Transforms.- Fourier Integral and Transforms (Cont'd.).- Fourier Transform Method for Partial DEs.- Fourier Transform Method for Partial DEs (Cont'd.).- Laplace Transforms.- Laplace Transforms (Cont'd.).- Laplace Transform Method for Ordinary DEs.- Laplace Transform Method for Partial DEs.- Well-Posed Problems.- Verification of Solutions.