Latent variable models for clustered ordinal data.

Existing methods for the analysis of clustered, ordinal data are inappropriate for certain applications. We propose latent variable models for clustered ordinal data which are derived as natural extensions of latent variable models for clustered binary data (Qu, Williams, Beck, and Medendorp, 1992. Biometrics 48, 1095-1102). These models can be applied to repeated measures data, familial data, longitudinal data, and data with both cluster specific and occasion specific covariates with a wide range of correlation structures.

[1]  M. Piedmonte,et al.  Small sample validity of latent variable models for correlated binary data , 1994 .

[2]  J. R. Landis,et al.  The analysis of longitudinal polytomous data: generalized estimating equations and connections with weighted least squares. , 1993, Biometrics.

[3]  Andrea Rotnitzky,et al.  Regression Models for Discrete Longitudinal Responses , 1993 .

[4]  Y. Qu,et al.  Latent Variable Models for Clustered Dichotomous Data with Multiple Subclusters , 1992 .

[5]  S. Zeger,et al.  Multivariate Regression Analyses for Categorical Data , 1992 .

[6]  Louise Ryan,et al.  Bivariate Latent Variable Models for Clustered Discrete and Continuous Outcomes , 1992 .

[7]  G Molenberghs,et al.  Multivariate probit analysis: a neglected procedure in medical statistics. , 1991, Statistics in medicine.

[8]  S. Lipsitz,et al.  Generalized estimating equations for correlated binary data: Using the odds ratio as a measure of association , 1991 .

[9]  R. Prentice,et al.  Correlated binary regression with covariates specific to each binary observation. , 1988, Biometrics.

[10]  J. Dale Global cross-ratio models for bivariate, discrete, ordered responses. , 1986, Biometrics.

[11]  S. Zeger,et al.  Longitudinal data analysis using generalized linear models , 1986 .

[12]  K Y Liang,et al.  Longitudinal data analysis for discrete and continuous outcomes. , 1986, Biometrics.

[13]  P. McCullagh Regression Models for Ordinal Data , 1980 .

[14]  J. Ashford,et al.  Multi-variate probit analysis. , 1970, Biometrics.

[15]  BIVARIATE PROBIT, LOGIT, AND BURRIT ANALYSIS , 1969 .

[16]  Strother H. Walker,et al.  Estimation of the probability of an event as a function of several independent variables. , 1967, Biometrika.