Highly Parallel Profiling of Cas9 Variant Specificity.

[1]  David A. Scott,et al.  Genome engineering using the CRISPR-Cas9 system , 2013, Nature Protocols.

[2]  Åsa K. Björklund,et al.  Tn5 transposase and tagmentation procedures for massively scaled sequencing projects , 2014, Genome research.

[3]  Neville E. Sanjana,et al.  Genome-Scale CRISPR-Cas9 Knockout Screening in Human Cells , 2014, Science.

[4]  Jonathan L. Schmid-Burgk,et al.  OutKnocker: a web tool for rapid and simple genotyping of designer nuclease edited cell lines , 2014, Genome research.

[5]  Jonathan L Schmid-Burgk,et al.  BrowserGenome.org: web-based RNA-seq data analysis and visualization , 2015, Nature Methods.

[6]  Feng Zhang,et al.  Genome engineering using CRISPR-Cas9 system. , 2015, Methods in molecular biology.

[7]  Martin J. Aryee,et al.  GUIDE-Seq enables genome-wide profiling of off-target cleavage by CRISPR-Cas nucleases , 2014, Nature Biotechnology.

[8]  Jong-il Kim,et al.  Digenome-seq: genome-wide profiling of CRISPR-Cas9 off-target effects in human cells , 2015, Nature Methods.

[9]  Zhicheng Zuo,et al.  Cas9-catalyzed DNA Cleavage Generates Staggered Ends: Evidence from Molecular Dynamics Simulations , 2016, Scientific Reports.

[10]  David A. Scott,et al.  Rationally engineered Cas9 nucleases with improved specificity , 2015, Science.

[11]  J. Joung,et al.  High-fidelity CRISPR-Cas9 variants with undetectable genome-wide off-targets , 2015, Nature.

[12]  J. Joung,et al.  Defining and improving the genome-wide specificities of CRISPR–Cas9 nucleases , 2016, Nature Reviews Genetics.

[13]  J. Andrew McCammon,et al.  Striking Plasticity of CRISPR-Cas9 and Key Role of Non-target DNA, as Revealed by Molecular Simulations , 2016, ACS central science.

[14]  Yuri Pritykin,et al.  GuideScan software for improved single and paired CRISPR guide RNA design , 2017, Nature Biotechnology.

[15]  Jennifer A. Doudna,et al.  Enhanced proofreading governs CRISPR-Cas9 targeting accuracy , 2017, Nature.

[16]  J. Joung,et al.  CIRCLE-seq: a highly sensitive in vitro screen for genome-wide CRISPR-Cas9 nuclease off-targets , 2017, Nature Methods.

[17]  Jennifer Listgarten,et al.  Prediction of off-target activities for the end-to-end design of CRISPR guide RNAs , 2018, Nature Biomedical Engineering.

[18]  Leslie S. Edwards,et al.  Mapping the genomic landscape of CRISPR–Cas9 cleavage , 2017, Nature Methods.

[19]  Jennifer A. Doudna,et al.  Enhanced proofreading governs CRISPR-Cas9 targeting accuracy , 2017, Nature.

[20]  Feng Zhang,et al.  Engineered Cpf1 variants with altered PAM specificities increase genome targeting range , 2017, Nature Biotechnology.

[21]  Alessandro Romanel,et al.  A highly specific SpCas9 variant is identified by in vivo screening in yeast , 2018, Nature Biotechnology.

[22]  David R. Liu,et al.  Evolved Cas9 variants with broad PAM compatibility and high DNA specificity , 2018, Nature.

[23]  Daesik Kim,et al.  Directed evolution of CRISPR-Cas9 to increase its specificity , 2017, Nature Communications.

[24]  Andrew R. Bassett,et al.  Predicting the mutations generated by repair of Cas9-induced double-strand breaks , 2018, Nature Biotechnology.

[25]  David K. Gifford,et al.  Predictable and precise template-free CRISPR editing of pathogenic variants , 2018, Nature.

[26]  Gang Bao,et al.  A high-fidelity Cas9 mutant delivered as a ribonucleoprotein complex enables efficient gene editing in human haematopoietic stem and progenitor cells , 2018, Nature Medicine.

[27]  David R. Liu,et al.  Search-and-replace genome editing without double-strand breaks or donor DNA , 2019, Nature.

[28]  William Stafford Noble,et al.  Massively parallel profiling and predictive modeling of the outcomes of CRISPR/Cas9-mediated double-strand break repair , 2018, bioRxiv.

[29]  Eugene V Koonin,et al.  RNA-guided DNA insertion with CRISPR-associated transposases , 2019, Science.

[30]  Charles D. Yeh,et al.  Unbiased detection of CRISPR off-targets in vivo using DISCOVER-Seq , 2018, Science.

[31]  Kira S. Makarova,et al.  Engineering of CRISPR-Cas12b for human genome editing , 2019, Nature Communications.