Decoherence-free dynamical and geometrical entangling phase gates (9 pages)

It is shown that entangling two-qubit phase gates for quantum computation with atoms inside a resonant optical cavity can be generated via common laser addressing, essentially, within one step. The obtained dynamical or geometrical phases are produced by an evolution that is robust against dissipation in form of spontaneous emission from the atoms and the cavity and demonstrates resilience against fluctuations of control parameters. This is achieved by using the setup introduced by Pachos and Walther [Phys. Rev. Lett. 89, 187903 (2002)] and employing entangling Raman- or STIRAP-like transitions that restrict the time evolution of the system onto stable ground states.

[1]  C. Hamley,et al.  Cavity QED with optically transported atoms , 2003, quant-ph/0309052.

[2]  Almut Beige Ion-trap quantum computing in the presence of cooling (11 pages) , 2003, quant-ph/0304168.

[3]  A. D. Boozer,et al.  Supplementary Information for Experimental Realization of a One-Atom Laser in the Regime of Strong Coupling , 2003 .

[4]  P. Kok,et al.  Conditional linear-optical measurement schemes generate effective photon nonlinearities , 2003, quant-ph/0305152.

[5]  G. Rempe,et al.  Entangled-state preparation via dissipation-assisted adiabatic passages , 2003, quant-ph/0305116.

[6]  K. Mølmer,et al.  Measurement induced entanglement and quantum computation with atoms in optical cavities. , 2003, Physical review letters.

[7]  I. Fuentes-guridi,et al.  Geometric phase in open systems. , 2003, Physical review letters.

[8]  J. Cirac,et al.  Trapping atoms in the vacuum field of a cavity , 2002, quant-ph/0212068.

[9]  L. You,et al.  Conditional quantum phase gate between two 3-state atoms. , 2002, Physical review letters.

[10]  L. You,et al.  Quantum logic between atoms inside a high-Q optical cavity , 2002, quant-ph/0209096.

[11]  G. Milburn,et al.  Quantum technology: the second quantum revolution , 2002, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[12]  P. Domokos,et al.  Towards single-atom detection on a chip , 2002, quant-ph/0210090.

[13]  G. Rempe,et al.  Deterministic single-photon source for distributed quantum networking. , 2002, Physical review letters.

[14]  G. Rempe,et al.  Feedback on the motion of a single atom in an optical cavity. , 2002, Physical review letters.

[15]  J. Cirac,et al.  Holonomic quantum computation with neutral atoms , 2002, quant-ph/0204030.

[16]  A. Zeilinger,et al.  Matter-wave interferometer for large molecules. , 2002, Physical review letters.

[17]  M. Plenio,et al.  Quantum-information processing in strongly detuned optical cavities , 2001, quant-ph/0111147.

[18]  H. Walther,et al.  Quantum computation with trapped ions in an optical cavity. , 2001, Physical review letters.

[19]  T. Spiller,et al.  Decoherence of geometric phase gates , 2001, quant-ph/0110017.

[20]  P. Knight,et al.  Quantum computing in a macroscopic dark period , 2001, quant-ph/0109006.

[21]  Herbert Walther,et al.  Quantum optics: The atomic nanoscope , 2001, Nature.

[22]  Irene Marzoli,et al.  Quantum carpets, carpets of light , 2001 .

[23]  E. Knill,et al.  A scheme for efficient quantum computation with linear optics , 2001, Nature.

[24]  J. Pachos,et al.  Universal quantum computation by holonomic and nonlocal gates with imperfections , 2000, quant-ph/0009043.

[25]  N. Vitanov,et al.  Laser-induced population transfer by adiabatic passage techniques. , 2001, Annual review of physical chemistry.

[26]  Kuhn,et al.  Vacuum-stimulated raman scattering based on adiabatic passage in a high-finesse optical cavity , 2000, Physical review letters.

[27]  G. Guo,et al.  Efficient scheme for two-atom entanglement and quantum information processing in cavity QED , 2000, Physical review letters.

[28]  Knight,et al.  Quantum computing using dissipation to remain in a decoherence-free subspace , 2000, Physical review letters.

[29]  J. Pachos Quantum Computation by Geometrical Means , 2000, quant-ph/0003150.

[30]  Charles H. Bennett,et al.  Quantum information and computation , 1995, Nature.

[31]  P. Zanardi,et al.  Holonomic quantum computation , 1999, quant-ph/9904011.

[32]  B. Shore,et al.  Coherent population transfer among quantum states of atoms and molecules , 1998 .

[33]  Daniel A. Lidar,et al.  Decoherence-Free Subspaces for Quantum Computation , 1998, quant-ph/9807004.

[34]  Jonathan P. Dowling,et al.  CORRELATED INPUT-PORT, MATTER-WAVE INTERFEROMETER : QUANTUM-NOISE LIMITS TO THE ATOM-LASER GYROSCOPE , 1998 .

[35]  P. Zanardi,et al.  Noiseless Quantum Codes , 1997, quant-ph/9705044.

[36]  J. P. Woerdman,et al.  Observation of the geometric amplitude factor in an optical system , 1996 .

[37]  Rauch,et al.  Quantum phase in interferometry. , 1996, Physical review letters.

[38]  A. Ekert,et al.  Quantum computers and dissipation , 1996, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[39]  Woerdman,et al.  Observation of interference in transitions due to local geometric phases. , 1996, Physical review. A, Atomic, molecular, and optical physics.

[40]  G. C. Hegerfeldt,et al.  Conditional Hamiltonian and reset operator in the quantum jump approach , 1995, atom-ph/9512003.

[41]  Gardiner,et al.  Decoherence, continuous observation, and quantum computing: A cavity QED model. , 1995, Physical review letters.

[42]  J. Raimond,et al.  Simple cavity-QED two-bit universal quantum logic gate: The principle and expected performances. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[43]  Wineland,et al.  Young's interference experiment with light scattered from two atoms. , 1993, Physical review letters.

[44]  H. Carmichael An open systems approach to quantum optics , 1993 .

[45]  K. Mølmer,et al.  Wave-function approach to dissipative processes in quantum optics. , 1992, Physical review letters.

[46]  M. Berry Quantal phase factors accompanying adiabatic changes , 1984, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[47]  J. Eberly,et al.  Adiabatic following in multilevel systems , 1984 .

[48]  M. Scully,et al.  Quantum eraser: A proposed photon correlation experiment concerning observation and , 1982 .