Primate Brain Evolution in Phylogenetic Context

The order Primates is the group of mammals that includes the hominoids (apes and humans), Old World monkeys, New World monkeys, tarsiers, lemurs, lorises, and bush babies. Enormous progress has been made over the past three decades in understanding the relationships of primates to other mammals, the relationships among primate groups, and the adaptive origins of primates and of primate subgroups. Several lines of evidence indicate that primates belong to a higher-order grouping of mammals, the Archonta, that includes at least tree shrews and flying lemurs. Primates probably originated as a group of small, nocturnally active animals, evolving grasping extremities and close-set, forward-facing eyes to locomote and feed in the fine terminal branches of tree. The origin of anthropoid primates (New World monkeys, Old World monkeys, and hominoids) was marked by a shift to diurnality and the evolution of a retinal fovea for enhanced visual acuity, followed by increased body size and the advent of more complex forms of social organization Primate brain evolution was marked by changes at many levels of structural organization. Brain size increased early in primate evolution, with expansion of the neocortex and the addition of numerous new cortical sensory areas and new systems of interconnections between areas. Also, primates evolved new areas in higher-order cortical regions such as posterior parietal, superior temporal sulcal, and dorsolateral prefrontal cortex, and a new thalamic nucleus, the dorsal (medial) pulvinar, which has extensive connections with the higher-order cortex. The evolution of anthropoid primates was accompanied by further increases in brain size, and the appearance of new areas, especially in higher-order and limbic regions, although it is not clear that the addition of new areas accounts for the increased encephalization of anthropoids. Evolutionary changes in primate brain organization were by no means limited to changes in the complement of areas and extrinsic connectivity: numerous changes in the internal laminar and modular organization of cortical areas have been documented, and there is increasing evidence of changes in the morphological and biochemical phenotypes of brain cells.

[1]  R T Knight,et al.  Neural representations of skilled movement. , 2000, Brain : a journal of neurology.

[2]  P. Rakić,et al.  Distribution of photoreceptor subtypes in the retina of diurnal and nocturnal primates , 1990, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[3]  A Thiele,et al.  Pattern or retinotectal projection in the megachiropteran bat Rousettus aegyptiacus , 1991, The Journal of comparative neurology.

[4]  J. Rilling,et al.  Planum temporale asymmetries in great apes as revealed by magnetic resonance imaging (MRI) , 1998, Neuroreport.

[5]  M. Cartmill 2 – Pads and Claws in Arboreal Locomotion , 1974 .

[6]  R. Nudo,et al.  Descending pathways to the spinal cord, III: Sites of origin of the corticospinal tract , 1990, The Journal of comparative neurology.

[7]  Todd M. Preuss,et al.  Cytochrome oxidase 'blobs' and other characteristics of primary visual cortex in a lemuroid primate, Cheirogaleus medius. , 1996, Brain, behavior and evolution.

[8]  K Zilles,et al.  Quantitative cytoarchitectonics of the posterior cingulate cortex in primates , 1986, The Journal of comparative neurology.

[9]  C. Woolsey,et al.  Organization of the mammalian thalamus and its relationships to the cerebral cortex. , 1949, Electroencephalography and clinical neurophysiology.

[10]  Katsuyuki Sakai,et al.  The prefrontal cortex and working memory: physiology and brain imaging , 2004, Current Opinion in Neurobiology.

[11]  G. Ehret,et al.  The auditory cortex of the house mouse: left-right differences, tonotopic organization and quantitative analysis of frequency representation , 1997, Journal of Comparative Physiology A.

[12]  C. Noback,et al.  Cortical projections to the lower brain stem and spinal cord in the tree shrew (Tupaia glis) , 1967, The Journal of comparative neurology.

[13]  B. Seltzer,et al.  Neurochemical and connectional organization of the dorsal pulvinar complex in monkeys , 2000, The Journal of comparative neurology.

[14]  A. J. Mistlin,et al.  Visual analysis of body movements by neurones in the temporal cortex of the macaque monkey: A preliminary report , 1985, Behavioural Brain Research.

[15]  A. Dale,et al.  New images from human visual cortex , 1996, Trends in Neurosciences.

[16]  Jon H. Kaas,et al.  'What' and 'where' processing in auditory cortex , 1999, Nature Neuroscience.

[17]  P. Raven,et al.  Pollination by Lemurs and Marsupials: An Archaic Coevolutionary System , 1978, Science.

[18]  Scott T. Grafton,et al.  A distributed left hemisphere network active during planning of everyday tool use skills. , 2004, Cerebral cortex.

[19]  G. H. Jacobs THE DISTRIBUTION AND NATURE OF COLOUR VISION AMONG THE MAMMALS , 1993, Biological reviews of the Cambridge Philosophical Society.

[20]  M. Mishkin,et al.  Serial and parallel processing in rhesus monkey auditory cortex , 1997, The Journal of comparative neurology.

[21]  Edmund T Rolls,et al.  Convergence of sensory systems in the orbitofrontal cortex in primates and brain design for emotion. , 2004, The anatomical record. Part A, Discoveries in molecular, cellular, and evolutionary biology.

[22]  E. Miller,et al.  An integrative theory of prefrontal cortex function. , 2001, Annual review of neuroscience.

[23]  R. Andersen,et al.  Multimodal representation of space in the posterior parietal cortex and its use in planning movements. , 1997, Annual review of neuroscience.

[24]  J. Allman,et al.  A neuronal morphologic type unique to humans and great apes. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[25]  C. Cusick,et al.  The Superior Temporal Polysensory Region in Monkeys , 1997 .

[26]  C. Frith,et al.  Interacting minds--a biological basis. , 1999, Science.

[27]  P S Goldman-Rakic,et al.  Architectonics of the parietal and temporal association cortex in the strepsirhine primate Galago compared to the anthropoid primate Macaca , 1991, The Journal of comparative neurology.

[28]  L. Pubols,et al.  Somatotopic organization of spider monkey somatic sensory cerebral cortex , 1971, The Journal of comparative neurology.

[29]  P. Goldman-Rakic,et al.  Myelo‐ and cytoarchitecture of the granular frontal cortex and surrounding regions in the strepsirhine primate Galago and the anthropoid primate Macaca , 1991, The Journal of comparative neurology.

[30]  J. Kaas,et al.  Movement representation in the dorsal and ventral premotor areas of owl monkeys: A microstimulation study , 1996, The Journal of comparative neurology.

[31]  M. Mckenna Toward a Phylogenetic Classification of the Mammalia , 1975 .

[32]  J. Kaas,et al.  Representations of the body surface in areas 3b and 1 of postcentral parietal cortex of cebus monkeys , 1983, Brain Research.

[33]  S. Pellis,et al.  Is digital dexterity really related to corticospinal projections?: a re-analysis of the Heffner and Masterton data set using modern comparative statistics , 1999, Behavioural Brain Research.

[34]  G. H. Jacobs,et al.  Diurnality and cone photopigment polymorphism in strepsirrhines: examination of linkage in Lemur catta. , 2003, American journal of physical anthropology.

[35]  J. Horton,et al.  Cytochrome oxidase patches: a new cytoarchitectonic feature of monkey visual cortex. , 1984, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[36]  R. Heffner Primate hearing from a mammalian perspective. , 2004, The anatomical record. Part A, Discoveries in molecular, cellular, and evolutionary biology.

[37]  D. Pandya,et al.  Comparison of prefrontal architecture and connections. , 1996, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[38]  J. Kaas,et al.  Double representation of the body surface within cytoarchitectonic area 3b and 1 in “SI” in the owl monkey (aotus trivirgatus) , 1978, The Journal of comparative neurology.

[39]  Robert W. Sussman,et al.  Primate origins and the evolution of angiosperms , 1991, American journal of primatology.

[40]  S. Wise The primate premotor cortex: past, present, and preparatory. , 1985, Annual review of neuroscience.

[41]  J. K. Harting,et al.  The Mammalian Superior Colliculus: Studies of Its Morphology and Connections , 1984 .

[42]  David J. Freedman,et al.  The prefrontal cortex: categories, concepts and cognition. , 2002, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[43]  P. Goldman-Rakic Topography of cognition: parallel distributed networks in primate association cortex. , 1988, Annual review of neuroscience.

[44]  J. Kaas,et al.  Connectional Evidence for Dorsal and Ventral V3, and Other Extrastriate Areas in the Prosimian Primate, Galago garnetti , 2002, Brain, Behavior and Evolution.

[45]  G. H. Jacobs,et al.  Mutations in S-cone pigment genes and the absence of colour vision in two species of nocturnal primate , 1996, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[46]  G. Rizzolatti,et al.  Functional organization of inferior area 6 in the macaque monkey , 2004, Experimental Brain Research.

[47]  T. Preuss Taking the Measure of Diversity: Comparative Alternatives to the Model-Animal Paradigm in Cortical Neuroscience , 2000, Brain, Behavior and Evolution.

[48]  J. Kaas,et al.  Parallel thalamic activation of the first and second somatosensory areas in prosimian primates and tree shrews , 1991, The Journal of comparative neurology.

[49]  York Winter,et al.  Ultraviolet vision in a bat , 2003, Nature.

[50]  G. N. Brito,et al.  Prelimbic cortex, mediodorsal thalamus, septum, and delayed alternation in rats , 2004, Experimental Brain Research.

[51]  G. Sacher,et al.  The Role of Brain Maturation in the Evolution of the Primates , 1982 .

[52]  D. Buxhoeveden,et al.  Lateralization of Minicolumns in Human Planum temporale Is Absent in Nonhuman Primate Cortex , 2001, Brain, Behavior and Evolution.

[53]  David P. Friedman,et al.  Cortical connections of the somatosensory fields of the lateral sulcus of macaques: Evidence for a corticolimbic pathway for touch , 1986, The Journal of comparative neurology.

[54]  M. Cartmill Rethinking primate origins. , 1974, Science.

[55]  John D. Pettigrew,et al.  Comparison of the Retinotopic Organization of the Visual Wulst in Nocturnal and Diurnal Raptors, with a Note on the Evolution of Frontal Vision , 1978 .

[56]  H. Innan,et al.  Relaxed selective pressure on an essential component of pheromone transduction in primate evolution , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[57]  R. L. Susman,et al.  Fossil evidence for early hominid tool use. , 1994, Science.

[58]  J. Kaas,et al.  Archontan Affinities as Reflected in the Visual System , 1993 .

[59]  M. Sereno,et al.  From monkeys to humans: what do we now know about brain homologies? , 2005, Current Opinion in Neurobiology.

[60]  Gustavo Glusman,et al.  A comparison of the human and chimpanzee olfactory receptor gene repertoires. , 2005, Genome research.

[61]  Deepak N. Pandya,et al.  Role of Architectonics and Connections in the Study of Primate Brain Evolution , 1982 .

[62]  D. Hubel,et al.  Anatomical Demonstration of Columns in the Monkey Striate Cortex , 1969, Nature.

[63]  J. Moore,et al.  The primate cochlear nuclei: loss of lamination as a phylogenetic process. , 1980, The Journal of comparative neurology.

[64]  H. Frahm,et al.  Comparison of brain structure volumes in insectivora and primates. V. Area striata (AS). , 1984, Journal fur Hirnforschung.

[65]  T. Preuss Do Rats Have Prefrontal Cortex? The Rose-Woolsey-Akert Program Reconsidered , 1995, Journal of Cognitive Neuroscience.

[66]  Mark Mühlau,et al.  Left inferior parietal dominance in gesture imitation: an fMRI study , 2005, Neuropsychologia.

[67]  J. Kaas,et al.  Multiple representations of the body within the primary somatosensory cortex of primates. , 1979, Science.

[68]  M. Corbetta,et al.  A Common Network of Functional Areas for Attention and Eye Movements , 1998, Neuron.

[69]  P. Lemelin,et al.  Origins of Grasping and Locomotor Adaptations in Primates: Comparative and Experimental Approaches Using an Opossum Model , 2007 .

[70]  W. Murphy,et al.  Resolution of the Early Placental Mammal Radiation Using Bayesian Phylogenetics , 2001, Science.

[71]  J. Tanji,et al.  Behavioral planning in the prefrontal cortex , 2001, Current Opinion in Neurobiology.

[72]  D. Geschwind,et al.  Human brain evolution: insights from microarrays , 2004, Nature Reviews Genetics.

[73]  Steven Laureys,et al.  Posterior cingulate, precuneal and retrosplenial cortices: cytology and components of the neural network correlates of consciousness. , 2005, Progress in brain research.

[74]  P. Goldman-Rakic The prefrontal landscape: implications of functional architecture for understanding human mentation and the central executive. , 1996, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[75]  J. H. Kaas,et al.  A sequential representation of the occiput, arm, forearm and hand across the rostrocaudal dimension of areas 1, 2 and 5 in macaque monkeys , 1985, Brain Research.

[76]  R. Klatzky,et al.  Haptic identification of common objects: Effects of constraining the manual exploration process , 2004, Perception & psychophysics.

[77]  S. Kawamura,et al.  Ancestral Loss of Short Wave-Sensitive Cone Visual Pigment in Lorisiform Prosimians, Contrasting with Its Strict Conservation in Other Prosimians , 2004, Journal of Molecular Evolution.

[78]  M. Cartmill Arboreal Adaptations and the Origin of the Order Primates , 1972 .

[79]  M. Goodale,et al.  Separate visual pathways for perception and action , 1992, Trends in Neurosciences.

[80]  T. Robbins,et al.  Prefrontal executive and cognitive functions in rodents: neural and neurochemical substrates , 2004, Neuroscience & Biobehavioral Reviews.

[81]  Daniel Schmitt,et al.  Primate Gaits and Primate Origins , 2007 .

[82]  W. C. Hall,et al.  Evolution of neocortex. , 1969, Science.

[83]  Jay Neitz,et al.  Trichromatic colour vision in New World monkeys , 1996, Nature.

[84]  J. Kaas,et al.  Studies on the evolution of multiple somatosensory representations in primates: The organization of anterior parietal cortex in the new world callitrichid, Saguinus , 1986, The Journal of comparative neurology.

[85]  R. Desimone,et al.  Visual properties of neurons in a polysensory area in superior temporal sulcus of the macaque. , 1981, Journal of neurophysiology.

[86]  Joaquín M. Fuster,et al.  Executive frontal functions , 2000, Experimental Brain Research.

[87]  Aina Puce,et al.  Electrophysiology and brain imaging of biological motion. , 2003, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[88]  H. Woollard The Cortical Lamination of Tarsius. , 1925, Journal of anatomy.

[89]  C. Ross,et al.  Evolution of activity patterns and chromatic vision in primates: morphometrics, genetics and cladistics. , 2001, Journal of human evolution.

[90]  E. Evarts,et al.  Transcortical reflexes and servo control of movement. , 1981, Canadian journal of physiology and pharmacology.

[91]  M. Cartmill,et al.  New views on primate origins , 2005 .

[92]  Heffner Rs,et al.  The Role of the Corticospinal Tract in the Evolution of Human Digital Dexterity , 1983 .

[93]  Leslie G. Ungerleider,et al.  Mechanisms of visual attention in the human cortex. , 2000, Annual review of neuroscience.

[94]  A. Purvis A composite estimate of primate phylogeny. , 1995, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[95]  G. Fink,et al.  REVIEW: The functional organization of the intraparietal sulcus in humans and monkeys , 2005, Journal of anatomy.

[96]  J. Pettigrew Flying primates? Megabats have the advanced pathway from eye to midbrain. , 1986, Science.

[97]  J. Kaas,et al.  Distinctive compartmental organization of human primary visual cortex. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[98]  Iwona Stepniewska,et al.  Ipsilateral cortical connections of motor, premotor, frontal eye, and posterior parietal fields in a prosimian primate, Otolemur garnetti , 2005, The Journal of comparative neurology.

[99]  Jon H Kaas,et al.  Evolution of somatosensory and motor cortex in primates. , 2004, The anatomical record. Part A, Discoveries in molecular, cellular, and evolutionary biology.

[100]  Joscelyn N. Hoffmann,et al.  Meissner corpuscles and somatosensory acuity: the prehensile appendages of primates and elephants. , 2004, The anatomical record. Part A, Discoveries in molecular, cellular, and evolutionary biology.

[101]  D. Falk Mapping Fossil Endocasts , 1982 .

[102]  J. Kaas,et al.  Patterns of retinal terminations and laminar organization of the lateral geniculate nucleus of primates , 1978, The Journal of comparative neurology.

[103]  Jianzhi Zhang,et al.  Evolutionary deterioration of the vomeronasal pheromone transduction pathway in catarrhine primates , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[104]  D. Dacey Parallel pathways for spectral coding in primate retina. , 2000, Annual review of neuroscience.

[105]  Leslie G. Ungerleider,et al.  Pathways for motion analysis: Cortical connections of the medial superior temporal and fundus of the superior temporal visual areas in the macaque , 1990, The Journal of comparative neurology.

[106]  G. Orban,et al.  Comparative mapping of higher visual areas in monkeys and humans , 2004, Trends in Cognitive Sciences.

[107]  David H Laidlaw,et al.  Anatomical analysis of an aye-aye brain (Daubentonia madagascariensis, primates: Prosimii) combining histology, structural magnetic resonance imaging, and diffusion-tensor imaging. , 2005, The anatomical record. Part A, Discoveries in molecular, cellular, and evolutionary biology.

[108]  R. Passingham,et al.  Converging projections from the mediodorsal thalamic nucleus and mesencephalic dopaminergic neurons to the neocortex in three species , 1978, The Journal of comparative neurology.

[109]  PL Strick,et al.  Corticospinal terminations in two new-world primates: further evidence that corticomotoneuronal connections provide part of the neural substrate for manual dexterity , 1993, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[110]  J. Kaas,et al.  The evolution of isocortex. , 1995, Brain, behavior and evolution.

[111]  A. Schleicher,et al.  Comparative aspects of the primate posterior cingulate cortex , 1986, The Journal of comparative neurology.

[112]  H. Stephan,et al.  QUANTITATIVE COMPARATIVE NEUROANATOMY OF PRIMATES: AN ATTEMPT AT A PHYLOGENETIC INTERPRETATION * , 1969 .

[113]  C. Wysocki,et al.  Facts, fallacies, fears, and frustrations with human pheromones. , 2004, The anatomical record. Part A, Discoveries in molecular, cellular, and evolutionary biology.

[114]  C. Campbell,et al.  The Nervous System of the Tupaiidae: Its Bearing on Phyletic Relationships , 1980 .

[115]  D. Boyer,et al.  Grasping Primate Origins , 2002, Science.

[116]  R. F. Kay,et al.  Anthropoid Origins: Retrospective and Prospective , 2004 .

[117]  A. Braun,et al.  Asymmetry of chimpanzee planum temporale: humanlike pattern of Wernicke's brain language area homolog. , 1998, Science.

[118]  R. Vertes Differential projections of the infralimbic and prelimbic cortex in the rat , 2004, Synapse.

[119]  S. Robson,et al.  Phylogenetic relations between microbats, megabats and primates (Mammalia: Chiroptera and Primates). , 1989, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[120]  P. Hof,et al.  An unusual population of pyramidal neurons in the anterior cingulate cortex of hominids contains the calcium-binding protein calretinin , 2001, Neuroscience Letters.

[121]  G. Orban,et al.  Extracting 3D from Motion: Differences in Human and Monkey Intraparietal Cortex , 2002, Science.

[122]  Leslie G. Ungerleider Two cortical visual systems , 1982 .

[123]  M Mishkin,et al.  Serial and parallel processing of tactual information in somatosensory cortex of rhesus monkeys. , 1992, Journal of neurophysiology.

[124]  M. Petrides Lateral prefrontal cortex: architectonic and functional organization , 2005, Philosophical Transactions of the Royal Society B: Biological Sciences.

[125]  R. Passingham,et al.  The Attentional Role of the Left Parietal Cortex: The Distinct Lateralization and Localization of Motor Attention in the Human Brain , 2001, Journal of Cognitive Neuroscience.

[126]  R. E Passingham,et al.  Cerebral dominance for action in the human brain: the selection of actions , 2001, Neuropsychologia.

[127]  W. Verhaart The pyramidal tract of tupaia, compared to that in other primates , 1966, The Journal of comparative neurology.

[128]  J. Kaas,et al.  Cortical connections of striate and extrastriate visual areas in tree shrews , 1998, The Journal of comparative neurology.

[129]  R L Reep,et al.  Phylogeny through brain traits: more characters for the analysis of mammalian evolution. , 1994, Brain, behavior and evolution.

[130]  H. J. Jerison Brain, body and encephalization in early primates , 1979 .

[131]  R. Heffner,et al.  Variation in form of the pyramidal tract and its relationship to digital dexterity. , 1975, Brain, behavior and evolution.

[132]  G. Fink,et al.  Cerebral Representation of One’s Own Past: Neural Networks Involved in Autobiographical Memory , 1996, The Journal of Neuroscience.

[133]  D. Povinelli,et al.  Reconstructing the evolution of mind. , 1993, The American psychologist.

[134]  J. Kaas,et al.  Topography, architecture, and connections of somatosensory cortex in opossums: Evidence for five somatosensory areas , 1996, The Journal of comparative neurology.

[135]  R. Passingham,et al.  Premotor cortex in the rat. , 1988, Behavioral neuroscience.

[136]  J. Buettner‐Janusch Evolutionary and genetic biology of primates , 1963 .

[137]  M. Petrides Dissociable Roles of Mid-Dorsolateral Prefrontal and Anterior Inferotemporal Cortex in Visual Working Memory , 2000, The Journal of Neuroscience.

[138]  A. Hendrickson,et al.  Nocturnal tarsier retina has both short and long/medium‐wavelength cones in an unusual topography , 2000, The Journal of comparative neurology.

[139]  P. Goldman-Rakic,et al.  Ipsilateral cortical connections of granular frontal cortex in the strepsirhine primate Galago, with comparative comments on anthropoid primates , 1991, The Journal of comparative neurology.

[140]  J. Kaas,et al.  Areal, modular, and connectional organization of visual cortex in a prosimian primate, the slow loris (Nycticebus coucang). , 1993, Brain, behavior and evolution.

[141]  Guy A. Orban,et al.  Mapping the parietal cortex of human and non-human primates , 2006, Neuropsychologia.

[142]  William Hodos,et al.  Scala naturae: Why there is no theory in comparative psychology. , 1969 .

[143]  J. Gurche Early Primate Brain Evolution , 1982 .

[144]  A. Galaburda,et al.  Inferior parietal lobule. Divergent architectonic asymmetries in the human brain. , 1984, Archives of neurology.

[145]  S. Pääbo,et al.  Loss of Olfactory Receptor Genes Coincides with the Acquisition of Full Trichromatic Vision in Primates , 2004, PLoS biology.

[146]  C. Campbell,et al.  Pyramidal Tract: A Comparison of Two Prosimian Primates , 1965, Science.

[147]  Todd M. Preuss,et al.  The Role of the Neurosciences in Primate Evolutionary Biology: Historical Commentary and Prospectus , 1993 .

[148]  Todd M. Preuss,et al.  Specializations of the Human Visual System: The Monkey Model Meets Human Reality , 2003 .

[149]  R. Tootell,et al.  Anatomical evidence for MT and additional cortical visual areas in humans. , 1995, Cerebral cortex.

[150]  L. Radinsky Primate brain evolution. , 1982 .

[151]  N. Geschwind,et al.  Right-left asymmetrics in the brain. , 1978, Science.

[152]  C. Woolsey,et al.  The orbitofrontal cortex and its connections with the mediodorsal nucleus in rabbit, sheep and cat. , 1948, Research publications - Association for Research in Nervous and Mental Disease.

[153]  J. Kaas,et al.  Architectonic identification of the core region in auditory cortex of macaques, chimpanzees, and humans , 2001, The Journal of comparative neurology.

[154]  L A Krubitzer,et al.  The organization and connections of somatosensory cortex in marmosets , 1990, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[155]  J. Kaas,et al.  Overview of the visual system of Tarsius. , 2005, The anatomical record. Part A, Discoveries in molecular, cellular, and evolutionary biology.

[156]  M G Rosa,et al.  Visual field representation in striate and prestriate cortices of a prosimian primate (Galago garnetti). , 1997, Journal of neurophysiology.

[157]  J. Horton,et al.  Pattern of ocular dominance columns in human striate cortex in strabismic amblyopia , 1996, Visual Neuroscience.

[158]  Y. Tan,et al.  Vision: Trichromatic vision in prosimians , 1999, Nature.

[159]  J. Rauschecker,et al.  Mechanisms and streams for processing of "what" and "where" in auditory cortex. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[160]  Todd M. Preuss,et al.  Human brain evolution , 1999 .

[161]  K. A. Fitzpatrick,et al.  Organization of the hand area in the primary somatic sensory cortex (SmI) of the prosimian primate, Nycticebus coucang , 1982, The Journal of comparative neurology.

[162]  E. Callaway Structure and function of parallel pathways in the primate early visual system , 2005, The Journal of physiology.

[163]  H. Barbas Connections underlying the synthesis of cognition, memory, and emotion in primate prefrontal cortices , 2000, Brain Research Bulletin.

[164]  Jon H Kaas,et al.  Somatosensory cortex of prosimian Galagos: Physiological recording, cytoarchitecture, and corticocortical connections of anterior parietal cortex and cortex of the lateral sulcus , 2003, The Journal of comparative neurology.

[165]  P. Strick,et al.  Motor areas in the frontal lobe of the primate , 2002, Physiology & Behavior.

[166]  G. Rizzolatti,et al.  Functional organization of inferior area 6 in the macaque monkey , 1988, Experimental Brain Research.

[167]  M. Goldberg,et al.  Space and attention in parietal cortex. , 1999, Annual review of neuroscience.

[168]  S. O’Brien,et al.  Molecular phylogenetics and the origins of placental mammals , 2001, Nature.

[169]  G. H. Jacobs,et al.  Color vision in the ring-tailed lemur (Lemur catta). , 1985, Brain, behavior and evolution.

[170]  J. Pettigrew,et al.  Unusual pattern of retinogeniculate projections in the controversial primate Tarsius. , 1996, Brain, behavior and evolution.

[171]  K. Glendenning,et al.  Comparative Morphometry of Mammalian Central Auditory Systems: Variation in Nuclei and Form of the Ascending System , 1998, Brain, Behavior and Evolution.

[172]  T. Preuss Evolutionary Specializations of Primate Brain Systems , 2007 .

[173]  M. Mishkin,et al.  Dual streams of auditory afferents target multiple domains in the primate prefrontal cortex , 1999, Nature Neuroscience.

[174]  Dean Falk,et al.  Primate Brain Evolution: Methods and Concepts , 1982 .

[175]  M. Rosa Topographic organisation of extrastriate areas in the flying fox: Implications for the evolution of mammalian visual cortex , 1999, The Journal of comparative neurology.

[176]  Jon H. Kaas,et al.  The Organization of Visual Cortex in Primates: Problems, Conclusions, and the Use of Comparative Studies in Understanding the Human Brain , 1993 .

[177]  A. Blancher,et al.  The olfactory receptor gene repertoire in primates and mouse: evidence for reduction of the functional fraction in primates. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[178]  Dennis Drayna,et al.  Human taste genetics. , 2005, Annual review of genomics and human genetics.

[179]  J. Kaas The Segregation of Function in the Nervous System , 1995 .

[180]  Todd M Preuss,et al.  Human-specific organization of primary visual cortex: alternating compartments of dense Cat-301 and calbindin immunoreactivity in layer 4A. , 2002, Cerebral cortex.

[181]  J M Allman,et al.  The visuotopic organization of the superior colliculus of the owl monkey (Aotus trivirgatus) and the bush baby (Galago senegalensis). , 1973, Brain research.

[182]  Wen-Hsiung Li,et al.  Evidence from opsin genes rejects nocturnality in ancestral primates. , 2005, Proceedings of the National Academy of Sciences of the United States of America.