Multi-objective particle swarm optimization on computer grids

In recent years, a number of authors have successfully extended particle swarmoptimization to problem domains with multiple objec\-tives. This paper addresses theissue of parallelizing multi-objec\-tive particle swarms. We propose and empirically comparetwo parallel versions which differ in the way they divide the swarminto subswarms that can be processed independently on differentprocessors. One of the variants works asynchronouslyand is thus particularly suitable for heterogeneous computer clusters asoccurring e.g.\ in moderngrid computing platforms.

[1]  David W. Corne,et al.  Approximating the Nondominated Front Using the Pareto Archived Evolution Strategy , 2000, Evolutionary Computation.

[2]  Clarisse Dhaenens,et al.  Parallel Genetic Algorithms for multi-objective rule mining , 2005 .

[3]  Enrique Alba,et al.  Efficient parallel LAN/WAN algorithms for optimization. The mallba project , 2006, Parallel Comput..

[4]  Gary B. Lamont,et al.  Evolutionary Algorithms for Solving Multi-Objective Problems , 2002, Genetic Algorithms and Evolutionary Computation.

[5]  Jeng-Shyang Pan,et al.  A Parallel Particle Swarm Optimization Algorithm with Communication Strategies , 2005, J. Inf. Sci. Eng..

[6]  Jörn Mehnen,et al.  pMOHypEA: Parallel Evolutionary Multiobjective Optimization using Hypergraphs , 2006 .

[7]  Michael N. Vrahatis,et al.  Recent approaches to global optimization problems through Particle Swarm Optimization , 2002, Natural Computing.

[8]  Gary B. Lamont,et al.  Considerations in engineering parallel multiobjective evolutionary algorithms , 2003, IEEE Trans. Evol. Comput..

[9]  Bernhard Sendhoff,et al.  On Test Functions for Evolutionary Multi-objective Optimization , 2004, PPSN.

[10]  Eckart Zitzler,et al.  Indicator-Based Selection in Multiobjective Search , 2004, PPSN.

[11]  El-Ghazali Talbi,et al.  ParadisEO: A Framework for the Reusable Design of Parallel and Distributed Metaheuristics , 2004, J. Heuristics.

[12]  Enrique Alba,et al.  Parallelism and evolutionary algorithms , 2002, IEEE Trans. Evol. Comput..

[13]  Andreas Zell,et al.  Parallelization of Multi-objective Evolutionary Algorithms Using Clustering Algorithms , 2005, EMO.

[14]  J. Branke,et al.  Guidance in evolutionary multi-objective optimization , 2001 .

[15]  Gary B. Lamont,et al.  Evolutionary Algorithms for Solving Multi-Objective Problems (Genetic and Evolutionary Computation) , 2006 .

[16]  Konstantinos E. Parsopoulos,et al.  MULTIOBJECTIVE OPTIMIZATION USING PARALLEL VECTOR EVALUATED PARTICLE SWARM OPTIMIZATION , 2003 .

[17]  Jürgen Branke,et al.  About Selecting the Personal Best in Multi-Objective Particle Swarm Optimization , 2006, PPSN.

[18]  Enrique Alba,et al.  Observations in using Grid-enabled technologies for solving multi-objective optimization problems , 2006, Parallel Comput..

[19]  Hartmut Schmeck,et al.  Parallel implementations of evolutionary algorithms , 2001 .

[20]  Marco Laumanns,et al.  Scalable multi-objective optimization test problems , 2002, Proceedings of the 2002 Congress on Evolutionary Computation. CEC'02 (Cat. No.02TH8600).

[21]  Jürgen Branke,et al.  Distribution of Evolutionary Algorithms in Heterogeneous Networks , 2004, GECCO.

[22]  Erick Cantú-Paz,et al.  Efficient and Accurate Parallel Genetic Algorithms , 2000, Genetic Algorithms and Evolutionary Computation.

[23]  Andrew Lewis,et al.  NIMROD/O: A TOOL FOR AUTOMATIC DESIGN OPTIMISATION USING PARALLEL AND DISTRIBUTED SYSTEMS , 2000 .

[24]  Riccardo Poli,et al.  Particle swarm optimization , 1995, Swarm Intelligence.

[25]  Daniel Merkle,et al.  A New Multi-objective Particle Swarm Optimization Algorithm Using Clustering Applied to Automated Docking , 2005, Hybrid Metaheuristics.

[26]  Jürgen Teich,et al.  Covering Pareto-optimal fronts by subswarms in multi-objective particle swarm optimization , 2004, Proceedings of the 2004 Congress on Evolutionary Computation (IEEE Cat. No.04TH8753).

[27]  Francine Berman,et al.  Overview of the Book: Grid Computing – Making the Global Infrastructure a Reality , 2003 .

[28]  Jürgen Teich,et al.  Strategies for finding good local guides in multi-objective particle swarm optimization (MOPSO) , 2003, Proceedings of the 2003 IEEE Swarm Intelligence Symposium. SIS'03 (Cat. No.03EX706).

[29]  Marco Laumanns,et al.  A Tutorial on Evolutionary Multiobjective Optimization , 2004, Metaheuristics for Multiobjective Optimisation.

[30]  Eckart Zitzler,et al.  Evolutionary algorithms for multiobjective optimization: methods and applications , 1999 .

[31]  M Reyes Sierra,et al.  Multi-Objective Particle Swarm Optimizers: A Survey of the State-of-the-Art , 2006 .

[32]  Jonathan E. Fieldsend,et al.  A MOPSO Algorithm Based Exclusively on Pareto Dominance Concepts , 2005, EMO.

[33]  Kalyanmoy Deb,et al.  Parallelizing multi-objective evolutionary algorithms: cone separation , 2004, Proceedings of the 2004 Congress on Evolutionary Computation (IEEE Cat. No.04TH8753).

[34]  Francine Berman,et al.  Grid Computing: Making the Global Infrastructure a Reality , 2003 .

[35]  C.A. Coello Coello,et al.  MOPSO: a proposal for multiple objective particle swarm optimization , 2002, Proceedings of the 2002 Congress on Evolutionary Computation. CEC'02 (Cat. No.02TH8600).

[36]  Kalyanmoy Deb,et al.  Distributed Computing of Pareto-Optimal Solutions with Evolutionary Algorithms , 2003, EMO.