Poly-Spline Finite-Element Method

We introduce an integrated meshing and finite-element method pipeline enabling solution of partial differential equations in the volume enclosed by a boundary representation. We construct a hybrid hexahedral-dominant mesh, which contains a small number of star-shaped polyhedra, and build a set of high-order bases on its elements, combining triquadratic B-splines, triquadratic hexahedra, and harmonic elements. We demonstrate that our approach converges cubically under refinement, while requiring around 50% of the degrees of freedom than a similarly dense hexahedral mesh composed of triquadratic hexahedra. We validate our approach solving Poisson’s equation on a large collection of models, which are automatically processed by our algorithm, only requiring the user to provide boundary conditions on their surface.

[1]  Hang Si,et al.  TetGen, a Delaunay-Based Quality Tetrahedral Mesh Generator , 2015, ACM Trans. Math. Softw..

[2]  Katja Bachmeier,et al.  Finite Elements Theory Fast Solvers And Applications In Solid Mechanics , 2017 .

[3]  Markus H. Gross,et al.  Polyhedral Finite Elements Using Harmonic Basis Functions , 2008, Comput. Graph. Forum.

[4]  Paolo Cignoni,et al.  PolyCube-Maps , 2004, SIGGRAPH 2004.

[5]  Guoliang Xu,et al.  A Robust 2-Refinement Algorithm in Octree and Rhombic Dodecahedral Tree Based All-Hexahedral Mesh Generation , 2012, IMR.

[6]  Hujun Bao,et al.  Frame Field Singularity Correctionfor Automatic Hexahedralization , 2014, IEEE Transactions on Visualization and Computer Graphics.

[7]  Tao Ju,et al.  Mean value coordinates for closed triangular meshes , 2005, ACM Trans. Graph..

[8]  Hujun Bao,et al.  ℓ1-Based Construction of Polycube Maps from Complex Shapes , 2014, ACM Trans. Graph..

[9]  Hong Qin,et al.  Surface Mesh to Volumetric Spline Conversion with Generalized Polycubes , 2013, IEEE Transactions on Visualization and Computer Graphics.

[10]  Hujun Bao,et al.  All-hex meshing using closed-form induced polycube , 2016, ACM Trans. Graph..

[11]  T. Hughes,et al.  Isogeometric analysis : CAD, finite elements, NURBS, exact geometry and mesh refinement , 2005 .

[12]  Na Lei,et al.  Quadrilateral and hexahedral mesh generation based on surface foliation theory II , 2017 .

[13]  Douglas N. Arnold,et al.  Approximation by quadrilateral finite elements , 2000, Math. Comput..

[14]  Ilya Kostrikov,et al.  Surface Networks , 2017, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[15]  T. Hughes,et al.  ISOGEOMETRIC ANALYSIS: APPROXIMATION, STABILITY AND ERROR ESTIMATES FOR h-REFINED MESHES , 2006 .

[16]  Steven E. Benzley,et al.  A Comparison of All Hexagonal and All Tetrahedral Finite Element Meshes for Elastic and Elasto-plastic Analysis , 2011 .

[17]  Paolo Cignoni,et al.  Elastic textures for additive fabrication , 2015, ACM Trans. Graph..

[18]  Hendrik Speleers,et al.  Multi-degree smooth polar splines: A framework for geometric modeling and isogeometric analysis , 2017 .

[19]  K. Lipnikov,et al.  The nonconforming virtual element method , 2014, 1405.3741.

[20]  Konrad Polthier,et al.  CUBECOVER – Parameterization of 3D Volumes , 2011 .

[21]  Kai Hormann,et al.  Maximum Entropy Coordinates for Arbitrary Polytopes , 2008, Comput. Graph. Forum.

[22]  Thomas J. R. Hughes,et al.  Isogeometric Analysis: Toward Integration of CAD and FEA , 2009 .

[23]  Gianmarco Manzini,et al.  Mimetic finite difference method , 2014, J. Comput. Phys..

[24]  Jason F. Shepherd,et al.  Hexahedral mesh generation constraints , 2008, Engineering with Computers.

[25]  R. Franke A Critical Comparison of Some Methods for Interpolation of Scattered Data , 1979 .

[26]  Joseph E. Bishop,et al.  A displacement‐based finite element formulation for general polyhedra using harmonic shape functions , 2014 .

[27]  Kenji Shimada,et al.  Fully-automated hex-dominant mesh generation with directionality control via packing rectangular solid cells , 2003 .

[28]  Loïc Maréchal,et al.  Advances in Octree-Based All-Hexahedral Mesh Generation: Handling Sharp Features , 2009, IMR.

[29]  Martin Reimers,et al.  Mean value coordinates in 3D , 2005, Comput. Aided Geom. Des..

[30]  Cosmin G. Petra,et al.  An Augmented Incomplete Factorization Approach for Computing the Schur Complement in Stochastic Optimization , 2014, SIAM J. Sci. Comput..

[31]  Alla Sheffer,et al.  PolyCut , 2013, ACM Trans. Graph..

[32]  Matthew L. Staten,et al.  Unconstrained Paving & Plastering: A New Idea for All Hexahedral Mesh Generation , 2005, IMR.

[33]  Elaine Cohen,et al.  Volumetric parameterization of complex objects by respecting multiple materials , 2010, Comput. Graph..

[34]  Tom Lyche,et al.  T-spline simplification and local refinement , 2004, ACM Trans. Graph..

[35]  Zhigang Deng,et al.  Robust structure simplification for hex re-meshing , 2017, ACM Trans. Graph..

[36]  Jonathan Richard Shewchuk,et al.  Triangle: Engineering a 2D Quality Mesh Generator and Delaunay Triangulator , 1996, WACG.

[37]  John A. Evans,et al.  Isogeometric unstructured tetrahedral and mixed-element Bernstein–Bézier discretizations , 2017 .

[38]  Arturo Cifuentes,et al.  A performance study of tetrahedral and hexahedral elements in 3-D finite element structural analysis , 1992 .

[39]  Xin Li,et al.  Blended B-spline construction on unstructured quadrilateral and hexahedral meshes with optimal convergence rates in isogeometric analysis , 2018, Computer Methods in Applied Mechanics and Engineering.

[40]  Baining Guo,et al.  All-hex meshing using singularity-restricted field , 2012, ACM Trans. Graph..

[41]  F. Brezzi,et al.  Basic principles of Virtual Element Methods , 2013 .

[42]  Hujun Bao,et al.  Boundary aligned smooth 3D cross-frame field , 2011, ACM Trans. Graph..

[43]  A. Russo,et al.  New perspectives on polygonal and polyhedral finite element methods , 2014 .

[44]  Long Chen FINITE ELEMENT METHOD , 2013 .

[45]  Wenzel Jakob,et al.  Robust hex-dominant mesh generation using field-guided polyhedral agglomeration , 2017, ACM Trans. Graph..

[46]  Mihai Anitescu,et al.  Real-Time Stochastic Optimization of Complex Energy Systems on High-Performance Computers , 2014, Computing in Science & Engineering.

[47]  Martin Aigner,et al.  Swept Volume Parameterization for Isogeometric Analysis , 2009, IMA Conference on the Mathematics of Surfaces.

[48]  David Duvenaud,et al.  Neural Ordinary Differential Equations , 2018, NeurIPS.

[49]  G. Sangalli,et al.  IsoGeometric analysis using T-splines on two-patch geometries , 2011 .

[50]  Bruno Lévy,et al.  Hexahedral-dominant meshing , 2017, ACM Trans. Graph..

[51]  Eugene Zhang,et al.  All‐Hex Mesh Generation via Volumetric PolyCube Deformation , 2011, Comput. Graph. Forum.

[52]  Sebastian Martin,et al.  Flexible, Unified and Directable Methods for Simulating Deformable Objects , 2011 .

[53]  Yasushi Ito,et al.  Octree‐based reasonable‐quality hexahedral mesh generation using a new set of refinement templates , 2009 .

[54]  Mark Meyer,et al.  Harmonic coordinates for character articulation , 2007, ACM Trans. Graph..

[55]  J. Z. Zhu,et al.  The finite element method , 1977 .

[56]  Yang Liu,et al.  Efficient Volumetric PolyCube‐Map Construction , 2016, Comput. Graph. Forum.

[57]  S. Owen,et al.  H-Morph: an indirect approach to advancing front hex meshing , 1999 .