The pyramidal tract has a predictable course through the centrum semiovale: A diffusion‐tensor based tractography study

To identify reproducible anatomical landmarks that would allow predicting the course of the pyramidal tract (PT) through centrum semiovale.

[1]  R. Passingham,et al.  Initial Demonstration of in Vivo Tracing of Axonal Projections in the Macaque Brain and Comparison with the Human Brain Using Diffusion Tensor Imaging and Fast Marching Tractography , 2002, NeuroImage.

[2]  Andrei I Holodny,et al.  Diffusion-tensor MR tractography of somatotopic organization of corticospinal tracts in the internal capsule: initial anatomic results in contradistinction to prior reports. , 2005, Radiology.

[3]  Thomas P. Naidich,et al.  Anatomic Relationships along the Low-middle Convexity , 1995 .

[4]  F. Bloom,et al.  Locating the central sulcus: comparison of MR anatomic and magnetoencephalographic functional methods. , 1993, AJNR. American journal of neuroradiology.

[5]  U. Ebeling,et al.  Subcortical topography and proportions of the pyramidal tract , 2005, Acta Neurochirurgica.

[6]  H. Freund,et al.  Variation of perisylvian and calcarine anatomic landmarks within stereotaxic proportional coordinates. , 1990, AJNR. American journal of neuroradiology.

[7]  M Gerke,et al.  3D reconstructions of neurofunctional structures for neuroimaging. , 1996, Computerized medical imaging and graphics : the official journal of the Computerized Medical Imaging Society.

[8]  M. Raichle,et al.  Tracking neuronal fiber pathways in the living human brain. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[9]  J W Belliveau,et al.  Functional mapping of activated human primary cortex with a clinical MR imaging system. , 1993, Radiology.

[10]  M M Mesulam,et al.  Location of the central sulcus via cortical thickness of the precentral and postcentral gyri on MR. , 1996, AJNR. American journal of neuroradiology.

[11]  A. Valavanis,et al.  Anatomic relationships along the low-middle convexity: Part I--Normal specimens and magnetic resonance imaging. , 1995, Neurosurgery.

[12]  C. Poupon,et al.  Regularization of Diffusion-Based Direction Maps for the Tracking of Brain White Matter Fascicles , 2000, NeuroImage.

[13]  Y. Huang,et al.  Topography and identification of the inferior precentral sulcus in MR imaging. , 1989, AJNR. American journal of neuroradiology.

[14]  P. Basser,et al.  Toward a quantitative assessment of diffusion anisotropy , 1996, Magnetic resonance in medicine.

[15]  Pratik Mukherjee,et al.  Diffusion tensor imaging and fiber tractography in acute stroke. , 2005, Neuroimaging clinics of North America.

[16]  A Yagishita,et al.  Location of the corticospinal tract in the internal capsule at MR imaging. , 1994, Radiology.

[17]  J. Rademacher,et al.  Variability and asymmetry in the human precentral motor system. A cytoarchitectonic and myeloarchitectonic brain mapping study. , 2001, Brain : a journal of neurology.

[18]  H Uchida,et al.  Identification of pre- and postcentral gyri on CT and MR images on the basis of the medullary pattern of cerebral white matter. , 1991, Radiology.

[19]  T. Schwartz,et al.  Tumor involvement of the corticospinal tract: diffusion magnetic resonance tractography with intraoperative correlation. , 2001, Journal of neurosurgery.

[20]  H. Kretschmann,et al.  Localisation of the corticospinal fibres in the internal capsule in man. , 1988, Journal of anatomy.

[21]  M. LeMay,et al.  Computed tomographic localization of the precentral gyrus. , 1980, Radiology.

[22]  P. V. van Zijl,et al.  Three‐dimensional tracking of axonal projections in the brain by magnetic resonance imaging , 1999, Annals of neurology.

[23]  H. Kretschmann,et al.  Computer-assisted three-dimensional reconstruction of the corticospinal system as a reference for CT and MRI , 1998, Neuroradiology.

[24]  P. Basser,et al.  Estimation of the effective self-diffusion tensor from the NMR spin echo. , 1994, Journal of magnetic resonance. Series B.