THE ACS FORNAX CLUSTER SURVEY. IX. THE COLOR–MAGNITUDE RELATION OF GLOBULAR CLUSTER SYSTEMS

We investigate the color–magnitude relation for globular clusters (GCs)—the so-called blue tilt—detected in the Advanced Camera for Surveys (ACS) Fornax Cluster Survey and using the combined sample of GCs from the ACS Fornax and Virgo Cluster Surveys. We find a tilt of γz ≡ d(g − z)/dz = −0.0257 ± 0.0050 for the full GC sample of the Fornax Cluster Survey (≈5800 GCs). This is slightly shallower than the value γz = −0.0459 ± 0.0048 found for the Virgo Cluster Survey GC sample (≈11,100 GCs). The slope for the merged Fornax and Virgo data sets (≈16,900 GCs) is γz = −0.0293 ± 0.0085, corresponding to a mass–metallicity relation of Z ∝ M0.43±0.12. We find that the blue tilt sets in at masses in excess of M ∼ 2 × 105 M☉. The tilt is stronger for GCs belonging to high-mass galaxies (M* ≳ 5 × 1010 M☉) than for those in low-mass galaxies (M* ≲ 5 × 1010 M☉). It is also more pronounced for GCs with smaller galactocentric distances. Our findings suggest a range of mass–metallicity relations ZGC ∝ M0.3–0.7GC which vary as a function of host galaxy mass/luminosity, a scaling similar to that observed for dwarf spheroidal galaxies. We compare our observations to a recent model of star cluster self-enrichment with generally favorable results. We suggest that, within the context of this model, the protocluster clouds out of which the GCs formed may have had density profiles slightly steeper than isothermal and/or star formation efficiencies somewhat below 0.3. We caution, however, that the significantly different appearance of the color–magnitude diagrams (CMDs) defined by the GC systems associated with galaxies of similar mass and morphological type poses a challenge to any single mechanism, including self-enrichment, that seeks to explain generically the observed GC color–magnitude relations. We therefore suggest that the detailed (and stochastic) merger/accretion histories of individual galaxies have likely played a non-negligible role determining the distribution of GCs in the CMDs of individual GC systems.

[1]  J. Bailin,et al.  Diamonds on the Hat: globular clusters in the Sombrero galaxy (M104) , 2009, 0909.4805.

[2]  J. Blakeslee,et al.  THE MASS–METALLICITY RELATION OF GLOBULAR CLUSTERS IN THE CONTEXT OF NONLINEAR COLOR–METALLICTY RELATIONS , 2010, 1001.0979.

[3]  S. M. Fall,et al.  STELLAR FEEDBACK IN MOLECULAR CLOUDS AND ITS INFLUENCE ON THE MASS FUNCTION OF YOUNG STAR CLUSTERS , 2009, 0910.2238.

[4]  J. Bailin,et al.  A Blue Tilt in the Globular Cluster System of the Milky Way-like Galaxy NGC 5170 , 2009, 0911.4743.

[5]  J. Kruijssen The evolution of the stellar mass function in star clusters , 2009, 0910.4579.

[6]  W. Harris THE GLOBULAR CLUSTER SYSTEM IN M87: A WIDE-FIELD STUDY WITH CFHT/MEGACAM , 2009, 0908.1120.

[7]  Astrophysics,et al.  Accepted for publication in the Astrophysical Journal Preprint typeset using L ATEX style emulateapj v. 10/09/06 THE COLOR-MAGNITUDE RELATION FOR METAL-POOR GLOBULAR CLUSTERS IN M87: CONFIRMATION FROM DEEP HST/ACS IMAGING 1 , 2022 .

[8]  M. Krumholz,et al.  THE DYNAMICS OF RADIATION-PRESSURE-DOMINATED H ii REGIONS , 2009, 0906.4343.

[9]  B. Whitmore,et al.  FURTHER DEFINITION OF THE MASS–METALLICITY RELATION IN GLOBULAR CLUSTER SYSTEMS AROUND BRIGHTEST CLUSTER GALAXIES , 2009, 0906.2008.

[10]  Chinese Academy of Sciences,et al.  Multicolor photometric study of M31 globular clusters , 2009, 0906.1519.

[11]  H. Baumgardt,et al.  The photometric evolution of dissolving star clusters: II. Realistic models. Colours and M/L ratios , 2009, 0906.0606.

[12]  J. Bailin,et al.  STOCHASTIC SELF-ENRICHMENT, PRE-ENRICHMENT, AND THE FORMATION OF GLOBULAR CLUSTERS , 2009, 0901.2302.

[13]  Eric W. Peng,et al.  THE ACS FORNAX CLUSTER SURVEY. V. MEASUREMENT AND RECALIBRATION OF SURFACE BRIGHTNESS FLUCTUATIONS AND A PRECISE VALUE OF THE FORNAX–VIRGO RELATIVE DISTANCE , 2009, 0901.1138.

[14]  W. Harris,et al.  THE GLOBULAR CLUSTER SYSTEMS IN THE COMA ELLIPTICALS. IV: WFPC2 PHOTOMETRY FOR FIVE GIANT ELLIPTICALS ,  , 2008, 0811.1437.

[15]  T. Lauer,et al.  COLOR BIMODALITY IN M87 GLOBULAR CLUSTERS , 2008, 0811.0391.

[16]  L. Spitler HST/ACS Wide-Field Photometry of the Sombrero Galaxy Globular Cluster System , 2009 .

[17]  P. Humphrey LOW-MASS X-RAY BINARIES AND GLOBULAR CLUSTERS IN EARLY-TYPE GALAXIES. II. GLOBULAR CLUSTER CANDIDATES AND THEIR MASS–METALLICITY RELATION , 2008, 0809.0698.

[18]  J. Kruijssen,et al.  The photometric evolution of star clusters and the preferential loss of low-mass bodies – with an application to globular clusters , 2008, 0809.0307.

[19]  J. Strader,et al.  THE ORIGIN OF THE BLUE TILT IN EXTRAGALACTIC GLOBULAR CLUSTER SYSTEMS , 2008, 0808.1889.

[20]  Puragra Guhathakurta,et al.  Uncovering Extremely Metal-Poor Stars in the Milky Way’s Ultrafaint Dwarf Spheroidal Satellite Galaxies , 2008, 0807.1925.

[21]  Gepi,et al.  The ACS Virgo Cluster Survey. XV. The Formation Efficiencies of Globular Clusters in Early-Type Galaxies: The Effects of Mass and Environment , 2008, 0803.0330.

[22]  B. Whitmore,et al.  The Globular Cluster Systems around NGC 3311 and NGC 3309 , 2008, 0802.1723.

[23]  P. Kroupa,et al.  The influence of residual gas expulsion on the evolution of the Galactic globular cluster system and the origin of the Population II halo , 2007, 0712.1591.

[24]  G. Piotto,et al.  The ACS Survey of Galactic Globular Clusters. III. The Double Subgiant Branch of NGC 1851 , 2007, 0709.3762.

[25]  S. Eyheramendy,et al.  THE ACS VIRGO CLUSTER SURVEY XVI. SELECTION PROCEDURE AND CATALOGS OF GLOBULAR CLUSTER CANDIDATES , 2008 .

[26]  L. Infante,et al.  The ACS Fornax Cluster Survey. II. The Central Brightness Profiles of Early-Type Galaxies: A Characteristic Radius on Nuclear Scales and the Transition from Central Luminosity Deficit to Excess , 2007, 0711.1358.

[27]  D. Geisler,et al.  A quantitative link between globular clusters and the stellar haloes in elliptical galaxies , 2007, 0710.0904.

[28]  S. Mieske,et al.  On the Efficiency of Field Star Capture by Star Clusters , 2007, Proceedings of the International Astronomical Union.

[29]  Joshua D. Simon,et al.  Submitted to ApJ Preprint typeset using L ATEX style emulateapj v. 10/09/06 THE KINEMATICS OF THE ULTRA-FAINT MILKY WAY SATELLITES: SOLVING THE MISSING SATELLITE PROBLEM , 2022 .

[30]  J. Anderson,et al.  A Triple Main Sequence in the Globular Cluster NGC 2808 , 2007, astro-ph/0703767.

[31]  J. Anderson,et al.  The Multiplicity of the Subgiant Branch of ω Centauri: Evidence for Prolonged Star Formation , 2007, astro-ph/0703208.

[32]  J. Tonry,et al.  The ACS Virgo Cluster Survey. XII. The Luminosity Function of Globular Clusters in Early-Type Galaxies , 2007, astro-ph/0702496.

[33]  L. Infante,et al.  The ACS Fornax Cluster Survey. I. Introduction to the Survey and Data Reduction Procedures , 2007, astro-ph/0702320.

[34]  J. Tonry,et al.  The ACS Virgo Cluster Survey. XIII. SBF Distance Catalog and the Three-dimensional Structure of the Virgo Cluster , 2007, astro-ph/0702510.

[35]  J. Palouš,et al.  Hydrodynamics of the Matter Reinserted within Super Stellar Clusters , 2006, astro-ph/0612184.

[36]  F. D’Antona,et al.  NGC 6441: another indication of very high helium content in globular cluster stars , 2006, astro-ph/0610406.

[37]  J. Tonry,et al.  The ACS Virgo Cluster Survey. XIV. Analysis of Color-Magnitude Relations in Globular Cluster Systems , 2006, astro-ph/0609079.

[38]  J. Strader,et al.  Hubble Space Telescope ACS Wide-Field Photometry of the Sombrero Galaxy Globular Cluster System , 2006, astro-ph/0606337.

[39]  J. Tonry,et al.  A Fundamental Relation between Compact Stellar Nuclei, Supermassive Black Holes, and Their Host Galaxies , 2006, astro-ph/0603840.

[40]  H Germany,et al.  Large-scale study of the ngc 1399 globular cluster system in fornax , 2006, astro-ph/0603349.

[41]  J. Tonry,et al.  The ACS Virgo Cluster Survey. VIII. The Nuclei of Early-Type Galaxies , 2006, astro-ph/0603252.

[42]  J. Strader,et al.  Extragalactic Globular Clusters and Galaxy Formation , 2006, astro-ph/0602601.

[43]  J. Tonry,et al.  The ACS Virgo Cluster Survey. VI. Isophotal Analysis and the Structure of Early-Type Galaxies , 2006, astro-ph/0602297.

[44]  S. Yi,et al.  Explaining the Color Distributions of Globular Cluster Systems in Elliptical Galaxies , 2006, Science.

[45]  J. Tonry,et al.  The ACS Virgo Cluster Survey. IX. The Color Distributions of Globular Cluster Systems in Early-Type Galaxies , 2005, astro-ph/0509654.

[46]  W. E. Harris,et al.  Globular Cluster Systems in Brightest Cluster Galaxies: Bimodal Metallicity Distributions and the Nature of the High-Luminosity Clusters , 2005, astro-ph/0508195.

[47]  J. Tonry,et al.  The ACS Virgo Cluster Survey. X. Half-Light Radii of Globular Clusters in Early-Type Galaxies: Environmental Dependencies and a Standard Ruler for Distance Estimation , 2005, astro-ph/0508219.

[48]  J. Strader,et al.  Globular Clusters in Virgo Ellipticals: Unexpected Results for Giants and Dwarfs from Advanced Camera for Surveys Imaging , 2005, astro-ph/0508001.

[49]  Astrophysics,et al.  Self-enrichment in globular clusters - I. An analytic approach , 2005, astro-ph/0502443.

[50]  Giampaolo Piotto,et al.  Metallicities on the Double Main Sequence of ω Centauri Imply Large Helium Enhancement , 2004, astro-ph/0412016.

[51]  A. Jordán The ACS Fornax cluster survey , 2004, Proceedings of the International Astronomical Union.

[52]  J. Tonry,et al.  The ACS Virgo Cluster Survey. II. Data Reduction Procedures , 2004, astro-ph/0406433.

[53]  J. Tonry,et al.  The ACS Virgo Cluster Survey. III. Chandra and Hubble Space Telescope Observations of Low-Mass X-Ray Binaries and Globular Clusters in M87 , 2004, astro-ph/0405188.

[54]  J. Tonry,et al.  The ACS Virgo Cluster Survey. I. Introduction to the Survey , 2004, astro-ph/0404138.

[55]  G. Parmentier Self-enrichment of Galactic halo globular clusters: stimulated star formation and consequences for the halo metallicity distribution , 2004, astro-ph/0403234.

[56]  S. Cassisi,et al.  ω Centauri: The Population Puzzle Goes Deeper , 2004, astro-ph/0403112.

[57]  J. Brinkmann,et al.  The environmental dependence of the relations between stellar mass, structure, star formation and nuclear activity in galaxies , 2004, astro-ph/0402030.

[58]  Michael J. West,et al.  Reconstructing galaxy histories from globular clusters , 2004, Nature.

[59]  P. Côté,et al.  The ACS Virgo Cluster Survey III. Chandra and HST observations of low-mass X-Ray binaries and globular clusters in M87 , 2004 .

[60]  P. Côté,et al.  The Ages and Abundances of a Sample of Globular Clusters in M49 (NGC 4472) , 2003, astro-ph/0304333.

[61]  C. Lada,et al.  Embedded Clusters in Molecular Clouds , 2003, astro-ph/0301540.

[62]  Doug Geisler,et al.  The Globular Cluster System of NGC 1399. I. A Wide-Field Photometric Study , 2003, astro-ph/0301223.

[63]  J. Makino,et al.  Dynamical evolution of star clusters in tidal fields , 2002, astro-ph/0211471.

[64]  R. Nichol,et al.  The dependence of star formation history and internal structure on stellar mass for 105 low‐redshift galaxies , 2002, astro-ph/0205070.

[65]  P. Kroupa,et al.  The impact of mass loss on star cluster formation - I. Analytical results , 2002, astro-ph/0210378.

[66]  P. Côté,et al.  The ACS Virgo Cluster Survey , 2002 .

[67]  S. M. Fall,et al.  The Unique History of the Globular Cluster ω Centauri , 2002, astro-ph/0202045.

[68]  Belgium,et al.  Accretion of gas by globular cluster stars , 2002, astro-ph/0201341.

[69]  UK.,et al.  The self-enrichment of galactic halo globular clusters The mass-metallicity relation , 2001, astro-ph/0108437.

[70]  N. Benı́tez,et al.  The Photometric Performance and Calibration of the Hubble Space Telescope Advanced Camera for Surveys , 2005, astro-ph/0507614.

[71]  A. Walker,et al.  Multiple stellar populations in the globular cluster ω Centauri as tracers of a merger event , 1999, Nature.

[72]  H Germany,et al.  The central region of the Fornax cluster - III. Dwarf galaxies, globular clusters, and cD halo – are there interrelations? , 1999, astro-ph/9905112.

[73]  D. Schlegel,et al.  Maps of Dust Infrared Emission for Use in Estimation of Reddening and Cosmic Microwave Background Radiation Foregrounds , 1998 .

[74]  P. Côté,et al.  The Formation of Giant Elliptical Galaxies and Their Globular Cluster Systems , 1998, astro-ph/9804319.

[75]  J. Blakeslee,et al.  The Ages and Abundances of a Large Sample of M87 Globular Clusters , 1997, astro-ph/9709192.

[76]  Graeme H. Smith PRIMEVAL WINDS WITHIN GLOBULAR CLUSTERS , 1996 .

[77]  K. Ashman,et al.  Detecting Bimodality in Astronomical Datasets , 1994, astro-ph/9408030.

[78]  G. Lake,et al.  The self-enrichment of globular clusters , 1989 .

[79]  M. Dopita,et al.  The Potential for Supernova-induced Chemical Enrichment of Protoglobular Cluster Clouds , 1986 .

[80]  G. Gisler,et al.  The Fate of Gas in Globular Clusters , 1976 .