On the Nature of the Compact Sources in IRAS 16293–2422 Seen at Centimeter to Submillimeter Wavelengths

We present multi-epoch continuum observations of the Class 0 protostellar system IRAS 16293–2422 taken with the Very Large Array (VLA) at multiple wavelengths between 7 mm and 15 cm (41 GHz down to 2 GHz), as well as single-epoch Atacama Large Millimeter/submillimeter Array continuum observations covering the range from 0.4 to 1.3 mm (700 GHz down to 230 GHz). The new VLA observations confirm that source A2 is a protostar driving episodic mass ejections, and reveal the complex relative motion between A2 and A1. The spectrum of component B can be described by a single power law (Sν ∝ ν2.28) over the entire range from 3 to 700 GHz (10 cm down to 0.4 mm), suggesting that the emission is entirely dominated by dust even at λ = 10 cm. Finally, the size of source B appears to increase with frequency up to 41 GHz, remaining roughly constant (at 0.″39 ≡ 55 au) at higher frequencies. We interpret this as evidence that source B is a dusty structure of finite size that becomes increasingly optically thick at higher frequencies until, in the millimeter regime, the source becomes entirely optically thick. The lack of excess free–free emission at long wavelengths, combined with the absence of high-velocity molecular emission, indicates that source B does not drive a powerful outflow, and might indicate that source B is at a particularly early stage of its evolution.

[1]  G. Anglada,et al.  Radio jets from young stellar objects , 2018, The Astronomy and Astrophysics Review.

[2]  K. Menten,et al.  A revised distance to IRAS 16293-2422 from VLBA astrometry of associated water masers , 2018, Astronomy & Astrophysics.

[3]  C. Brinch,et al.  The ALMA-PILS survey: 3D modeling of the envelope, disks and dust filament of IRAS 16293-2422 , 2017, 1712.06984.

[4]  L. Hartmann,et al.  THE GOULD’S BELT DISTANCES SURVEY (GOBELINS). I. TRIGONOMETRIC PARALLAX DISTANCES AND DEPTH OF THE OPHIUCHUS COMPLEX , 2016, 1611.06466.

[5]  Zhi-Yun Li,et al.  A triple protostar system formed via fragmentation of a gravitationally unstable disk , 2016, Nature.

[6]  R. Indebetouw,et al.  THE MASSIVE PROTOSTELLAR CLUSTER NGC 6334I AT 220 au RESOLUTION: DISCOVERY OF FURTHER MULTIPLICITY, DIVERSITY, AND A HOT MULTI-CORE , 2016, 1609.07470.

[7]  Leslie W. Looney,et al.  THE VLA NASCENT DISK AND MULTIPLICITY SURVEY OF PERSEUS PROTOSTARS (VANDAM). II. MULTIPLICITY OF PROTOSTARS IN THE PERSEUS MOLECULAR CLOUD , 2016, 1601.00692.

[8]  G. Anglada,et al.  Radio Jets in Young Stellar Objects with the SKA , 2014, 1412.6409.

[9]  J. Girart,et al.  ON THE ORIGIN OF THE MOLECULAR OUTFLOWS IN IRAS 16293−2422 , 2013, 1311.4745.

[10]  L. Loinard,et al.  ALMA 690 GHz OBSERVATIONS OF IRAS 16293−2422B: INFALL IN A HIGHLY OPTICALLY THICK DISK , 2013, 1301.3105.

[11]  C. Brogan,et al.  Alma and vla observations of the outflows in iras 16293-2422 , 2012, 1211.4744.

[12]  Tokyo,et al.  The first ALMA view of IRAS 16293-2422: Direct detection of infall onto source B and high-resolution kinematics of source A , 2012, 1206.5215.

[13]  A. Tielens,et al.  TIMASSS: the IRAS 16293-2422 millimeter and submillimeter spectral survey. I. Observations, calibration, and analysis of the line kinematics , 2011, 1103.5347.

[14]  Frantz Martinache,et al.  MAPPING THE SHORES OF THE BROWN DWARF DESERT. II. MULTIPLE STAR FORMATION IN TAURUS–AURIGA , 2011, 1101.4016.

[15]  D. Lis,et al.  The solar type protostar IRAS16293-2422: new constraints on the physical structure , 2010, 1003.5774.

[16]  C. Brogan,et al.  CONFIRMATION OF A RECENT BIPOLAR EJECTION IN THE VERY YOUNG HIERARCHICAL MULTIPLE SYSTEM IRAS 16293–2422 , 2010, 1002.2417.

[17]  W. Dehnen,et al.  Local kinematics and the local standard of rest , 2009, 0912.3693.

[18]  D. Marrone,et al.  IRAS 16293: A “MAGNETIC” TALE OF TWO CORES , 2009, 0910.5269.

[19]  K. Stassun,et al.  Surprising dissimilarities in a newly formed pair of ‘identical twin’ stars , 2008, Nature.

[20]  P. Ho,et al.  The CO Molecular Outflows of IRAS 16293–2422 Probed by the Submillimeter Array , 2007, 0710.2635.

[21]  C. Brogan,et al.  New Radio Sources and the Composite Structure of Component B in the Very Young Protostellar System IRAS 16293–2422 , 2007, 0708.2420.

[22]  M. Norman,et al.  Two Regimes of Turbulent Fragmentation and the Stellar Initial Mass Function from Primordial to Present-Day Star Formation , 2007, astro-ph/0701795.

[23]  C. Brogan,et al.  IRAS 16293–2422: Proper Motions, Jet Precession, the Hot Core, and the Unambiguous Detection of Infall , 2005, astro-ph/0506435.

[24]  L. Loinard,et al.  IRAS 16293–2422B: A Compact, Possibly Isolated Protoplanetary Disk in a Class 0 Object , 2005, astro-ph/0501621.

[25]  M. Griffin,et al.  The circumstellar environment of IRAS 16293-2422 ISO-LWS and SCUBA observations , 2004 .

[26]  S. Goodwin,et al.  Simulating star formation in molecular cloud cores. I. The influence of low levels of turbulence on fragmentation and multiplicity , 2003, astro-ph/0309829.

[27]  E. F. Dishoeck,et al.  Does IRAS 16293–2422 have a hot core? Chemical inventory and abundance changes in its protostellar environment , 2002, astro-ph/0205457.

[28]  E. Young,et al.  Further Mid-Infrared Study of the rho Ophiuchi Cloud Young Stellar Population: Luminosities and Masses of Pre--Main-Sequence Stars , 1994 .

[29]  S. Lubow,et al.  Dynamics of binary-disk interaction. 1: Resonances and disk gap sizes , 1994 .

[30]  P. Andre',et al.  Submillimeter Continuum Observations of rho Ophiuchi A: The Candidate Protostar VLA 1623 and Prestellar Clumps , 1993 .

[31]  S. Nozawa,et al.  A Remarkable Multilobe Molecular Outflow: rho Ophiuchi East, Associated with IRAS 16293-2422 , 1990 .

[32]  Fred C. Adams,et al.  Eccentric gravitational instabilities in nearly Keplerian disks , 1989 .

[33]  L. Mundy,et al.  IRAS 16293-2422: A Very Young Binary System , 1989 .

[34]  A. Wootten The Duplicity of IRAS 16293-2422: A Protobinary Star? , 1989 .

[35]  J. Najita,et al.  Mass loss from rapidly rotating magnetic protostars , 1988 .

[36]  E. Young,et al.  Spectroscopic Evidence for Infall around an Extraordinary IRAS Source in Ophiuchus , 1986 .

[37]  C. Lada,et al.  The nature of the embedded population in the Rho Ophiuchi dark cloud - Mid-infrared observations , 1984 .

[38]  R. Garrod,et al.  The ALMA Protostellar Interferometric Line Survey (PILS) , 2016, 1607.08733.

[39]  F. Adams,et al.  Star Formation in Molecular Clouds: Observation and Theory , 1987 .