On the Nature of the Compact Sources in IRAS 16293–2422 Seen at Centimeter to Submillimeter Wavelengths
暂无分享,去创建一个
K. Menten | C. Brogan | L. Hartmann | L. Loinard | D. Wilner | E. Caux | P. Ho | C. Chandler | L. Zapata | A. Hern'andez-G'omez | S. Bottinelli | Luis F. Rodríguez | D. Qu'enard | L. Hartmann | A. Hernández-Gómez
[1] G. Anglada,et al. Radio jets from young stellar objects , 2018, The Astronomy and Astrophysics Review.
[2] K. Menten,et al. A revised distance to IRAS 16293-2422 from VLBA astrometry of associated water masers , 2018, Astronomy & Astrophysics.
[3] C. Brinch,et al. The ALMA-PILS survey: 3D modeling of the envelope, disks and dust filament of IRAS 16293-2422 , 2017, 1712.06984.
[4] L. Hartmann,et al. THE GOULD’S BELT DISTANCES SURVEY (GOBELINS). I. TRIGONOMETRIC PARALLAX DISTANCES AND DEPTH OF THE OPHIUCHUS COMPLEX , 2016, 1611.06466.
[5] Zhi-Yun Li,et al. A triple protostar system formed via fragmentation of a gravitationally unstable disk , 2016, Nature.
[6] R. Indebetouw,et al. THE MASSIVE PROTOSTELLAR CLUSTER NGC 6334I AT 220 au RESOLUTION: DISCOVERY OF FURTHER MULTIPLICITY, DIVERSITY, AND A HOT MULTI-CORE , 2016, 1609.07470.
[7] Leslie W. Looney,et al. THE VLA NASCENT DISK AND MULTIPLICITY SURVEY OF PERSEUS PROTOSTARS (VANDAM). II. MULTIPLICITY OF PROTOSTARS IN THE PERSEUS MOLECULAR CLOUD , 2016, 1601.00692.
[8] G. Anglada,et al. Radio Jets in Young Stellar Objects with the SKA , 2014, 1412.6409.
[9] J. Girart,et al. ON THE ORIGIN OF THE MOLECULAR OUTFLOWS IN IRAS 16293−2422 , 2013, 1311.4745.
[10] L. Loinard,et al. ALMA 690 GHz OBSERVATIONS OF IRAS 16293−2422B: INFALL IN A HIGHLY OPTICALLY THICK DISK , 2013, 1301.3105.
[11] C. Brogan,et al. Alma and vla observations of the outflows in iras 16293-2422 , 2012, 1211.4744.
[12] Tokyo,et al. The first ALMA view of IRAS 16293-2422: Direct detection of infall onto source B and high-resolution kinematics of source A , 2012, 1206.5215.
[13] A. Tielens,et al. TIMASSS: the IRAS 16293-2422 millimeter and submillimeter spectral survey. I. Observations, calibration, and analysis of the line kinematics , 2011, 1103.5347.
[14] Frantz Martinache,et al. MAPPING THE SHORES OF THE BROWN DWARF DESERT. II. MULTIPLE STAR FORMATION IN TAURUS–AURIGA , 2011, 1101.4016.
[15] D. Lis,et al. The solar type protostar IRAS16293-2422: new constraints on the physical structure , 2010, 1003.5774.
[16] C. Brogan,et al. CONFIRMATION OF A RECENT BIPOLAR EJECTION IN THE VERY YOUNG HIERARCHICAL MULTIPLE SYSTEM IRAS 16293–2422 , 2010, 1002.2417.
[17] W. Dehnen,et al. Local kinematics and the local standard of rest , 2009, 0912.3693.
[18] D. Marrone,et al. IRAS 16293: A “MAGNETIC” TALE OF TWO CORES , 2009, 0910.5269.
[19] K. Stassun,et al. Surprising dissimilarities in a newly formed pair of ‘identical twin’ stars , 2008, Nature.
[20] P. Ho,et al. The CO Molecular Outflows of IRAS 16293–2422 Probed by the Submillimeter Array , 2007, 0710.2635.
[21] C. Brogan,et al. New Radio Sources and the Composite Structure of Component B in the Very Young Protostellar System IRAS 16293–2422 , 2007, 0708.2420.
[22] M. Norman,et al. Two Regimes of Turbulent Fragmentation and the Stellar Initial Mass Function from Primordial to Present-Day Star Formation , 2007, astro-ph/0701795.
[23] C. Brogan,et al. IRAS 16293–2422: Proper Motions, Jet Precession, the Hot Core, and the Unambiguous Detection of Infall , 2005, astro-ph/0506435.
[24] L. Loinard,et al. IRAS 16293–2422B: A Compact, Possibly Isolated Protoplanetary Disk in a Class 0 Object , 2005, astro-ph/0501621.
[25] M. Griffin,et al. The circumstellar environment of IRAS 16293-2422 ISO-LWS and SCUBA observations , 2004 .
[26] S. Goodwin,et al. Simulating star formation in molecular cloud cores. I. The influence of low levels of turbulence on fragmentation and multiplicity , 2003, astro-ph/0309829.
[27] E. F. Dishoeck,et al. Does IRAS 16293–2422 have a hot core? Chemical inventory and abundance changes in its protostellar environment , 2002, astro-ph/0205457.
[28] E. Young,et al. Further Mid-Infrared Study of the rho Ophiuchi Cloud Young Stellar Population: Luminosities and Masses of Pre--Main-Sequence Stars , 1994 .
[29] S. Lubow,et al. Dynamics of binary-disk interaction. 1: Resonances and disk gap sizes , 1994 .
[30] P. Andre',et al. Submillimeter Continuum Observations of rho Ophiuchi A: The Candidate Protostar VLA 1623 and Prestellar Clumps , 1993 .
[31] S. Nozawa,et al. A Remarkable Multilobe Molecular Outflow: rho Ophiuchi East, Associated with IRAS 16293-2422 , 1990 .
[32] Fred C. Adams,et al. Eccentric gravitational instabilities in nearly Keplerian disks , 1989 .
[33] L. Mundy,et al. IRAS 16293-2422: A Very Young Binary System , 1989 .
[34] A. Wootten. The Duplicity of IRAS 16293-2422: A Protobinary Star? , 1989 .
[35] J. Najita,et al. Mass loss from rapidly rotating magnetic protostars , 1988 .
[36] E. Young,et al. Spectroscopic Evidence for Infall around an Extraordinary IRAS Source in Ophiuchus , 1986 .
[37] C. Lada,et al. The nature of the embedded population in the Rho Ophiuchi dark cloud - Mid-infrared observations , 1984 .
[38] R. Garrod,et al. The ALMA Protostellar Interferometric Line Survey (PILS) , 2016, 1607.08733.
[39] F. Adams,et al. Star Formation in Molecular Clouds: Observation and Theory , 1987 .