Light dark matter, naturalness, and the radiative origin of the electroweak scale

[1]  G. M. Pelaggi Predictions of a model of weak scale from dynamical breaking of scale invariance , 2014, 1406.4104.

[2]  Dongjin Chway,et al.  Radiative electroweak symmetry breaking model perturbative all the way to the Planck scale. , 2014, Physical review letters.

[3]  J. Elias-Miró,et al.  Taming infrared divergences in the effective potential , 2014, 1406.2652.

[4]  S. P. Martin Taming the Goldstone contributions to the effective potential , 2014, 1406.2355.

[5]  M. Lindner,et al.  Neutrino masses and conformal electro-weak symmetry breaking , 2014, 1405.6204.

[6]  Lukasz Zwalinski,et al.  Search for invisible decays of a Higgs boson produced in association with a Z boson in ATLAS , 2014, 1402.3244.

[7]  Jing Ren,et al.  Higgs Partner Searches and Dark Matter Phenomenology in a Classically Scale Invariant Higgs Boson Sector , 2014, 1405.0498.

[8]  I. Lewis,et al.  Right-Handed Neutrinos as the Origin of the Electroweak Scale , 2014, 1404.6260.

[9]  V. M. Ghete,et al.  Measurement of the properties of a Higgs boson in the four-lepton final state , 2014 .

[10]  C. Jessop,et al.  Search for invisible decays of Higgs bosons in the vector boson fusion and associated ZH production modes , 2014, The European physical journal. C, Particles and fields.

[11]  V. Khoze,et al.  Higgs vacuum stability from the dark matter portal , 2014, 1403.4953.

[12]  M. Lindner,et al.  Electroweak symmetry breaking via QCD. , 2014, Physical review letters.

[13]  Atlas Collaboration Search for invisible decays of a Higgs boson produced in association with a Z boson in ATLAS , 2014, 1402.3244.

[14]  B. Radovčić,et al.  Electroweak breaking and Dark Matter from the common scale , 2014, 1401.8183.

[15]  M. Hashimoto,et al.  Radiative symmetry breaking from flat potential in various U(1)′ models , 2014, 1401.5944.

[16]  K. Honscheid,et al.  Planning the Future of U.S. Particle Physics (Snowmass 2013): Chapter 4: Cosmic Frontier , 2014, 1401.6085.

[17]  D. Whiteson,et al.  Planning the Future of U.S. Particle Physics (Snowmass 2013): Chapter 3: Energy Frontier , 2014 .

[18]  V. M. Ghete,et al.  Measurement of Higgs boson production and properties in the WW decay channel with leptonic final states , 2013, Journal of High Energy Physics.

[19]  C. Hill Is the Higgs Boson Associated with Coleman-Weinberg Dynamical Symmetry Breaking? , 2014, 1401.4185.

[20]  M. Hoferichter,et al.  Accurate evaluation of hadronic uncertainties in spin-independent WIMP-nucleon scattering: Disentangling two- and three-flavor effects , 2013, 1312.4951.

[21]  R. Webb,et al.  First results from the LUX dark matter experiment at the Sanford underground research facility. , 2013, Physical review letters.

[22]  M. Hashimoto,et al.  Radiative symmetry breaking at the Fermi scale and flat potential at the Planck scale , 2013, 1310.4304.

[23]  Kris Sigurdson,et al.  Constraints on large-scale dark acoustic oscillations from cosmology , 2013, 1310.3278.

[24]  R. Mann,et al.  Viable dark matter via radiative symmetry breaking in a scalar singlet Higgs portal extension of the standard model. , 2013, Physical review letters.

[25]  M. Raidal,et al.  Towards Completing the Standard Model: Vacuum Stability, EWSB and Dark Matter , 2013, 1309.6632.

[26]  M. Schmaltz,et al.  Higgs mass naturalness and scale invariance in the UV , 2013, 1308.0025.

[27]  K. Tuominen,et al.  Physical Naturalness and Dynamical Breaking of Classical Scale Invariance , 2013, 1304.7006.

[28]  C. A. Oxborrow,et al.  Planck 2013 results. XVI. Cosmological parameters , 2013, 1303.5076.

[29]  V. M. Ghete,et al.  Search for top-squark pair production in the single-lepton final state in pp collisions at $\sqrt{s}=8\ \mathrm{TeV}$ , 2013 .

[30]  M. Lindner,et al.  Electroweak and conformal symmetry breaking by a strongly coupled hidden sector , 2013, 1310.4423.

[31]  S. Zambito Measurements of the properties of the Higgs-like boson in the four lepton decay channel with the ATLAS detector using 25 fb$^{-1}$ of proton-proton collision data , 2013 .

[32]  C. Tamarit Running couplings with a vanishing scale anomaly , 2013, 1309.0913.

[33]  V. Khoze Inflation and dark matter in the Higgs portal of classically scale invariant Standard Model , 2013, 1308.6338.

[34]  Dongjin Chway,et al.  Coleman-Weinberg Higgs , 2013, 1308.0891.

[35]  Hong-jian He,et al.  Natural electroweak symmetry breaking from scale invariant Higgs mechanism , 2013, 1308.0295.

[36]  Raymundo Ramos,et al.  Classical scale-invariance, the electroweak scale and vector dark matter , 2013, 1307.8428.

[37]  Alessandro Strumia,et al.  Investigating the near-criticality of the Higgs boson , 2013, 1307.3536.

[38]  L. Moustakas,et al.  Cosmological simulations with self-interacting dark matter , 2013 .

[39]  A. Strumia,et al.  Dynamical generation of the weak and Dark Matter scale , 2013, 1306.2329.

[40]  S. Dubovsky,et al.  Natural tuning: towards a proof of concept , 2013, 1305.6939.

[41]  Sunghoon Jung,et al.  Radiative generation of the Higgs potential , 2013, 1304.5815.

[42]  D. Pappadopulo,et al.  A modified naturalness principle and its experimental tests , 2013, 1303.7244.

[43]  S. Pastor,et al.  Probing interactions within the dark matter sector via extra radiation contributions , 2013, 1303.1776.

[44]  JiJi Fan,et al.  Double-Disk Dark Matter , 2013, 1303.1521.

[45]  C. Englert,et al.  Emergence of the electroweak scale through the Higgs portal , 2013, 1301.4224.

[46]  Hiren H. Patel,et al.  Stepping Into Electroweak Symmetry Breaking: Phase Transitions and Higgs Phenomenology , 2012, 1212.5652.

[47]  S. Iso,et al.  TeV-scale B − L model with a flat Higgs potential at the Planck scale: In view of the hierarchy problem , 2012, 1210.2848.

[48]  Annika H. G. Peter,et al.  Cosmological simulations with self-interacting dark matter – II. Halo shapes versus observations , 2012, 1208.3026.

[49]  Sunghoon Jung,et al.  Singlet assisted vacuum stability and the Higgs to diphoton rate , 2012, 1211.2449.

[50]  B. Famaey Gaia and the dynamics of the Galaxy , 2012, 1209.5753.

[51]  E Aprile,et al.  Dark matter results from 225 live days of XENON100 data. , 2012, Physical review letters.

[52]  G. Degrassi,et al.  Higgs mass and vacuum stability in the Standard Model at NNLO , 2012, 1205.6497.

[53]  Yuta Orikasa The classically conformal B-L extended standard model , 2012 .

[54]  O. Lebedev On stability of the electroweak vacuum and the Higgs portal , 2012, 1203.0156.

[55]  A. Strumia,et al.  Stabilization of the electroweak vacuum by a scalar threshold effect , 2012, 1203.0237.

[56]  Koji Ishiwata Dark Matter in Classically Scale-Invariant Two Singlets Standard Model , 2011, 1112.2696.

[57]  Francesco Riva,et al.  Strong electroweak phase transitions in the Standard Model with a singlet , 2011, 1107.5441.

[58]  Harry Harmens,et al.  Working group report , 2011 .

[59]  A. Pilaftsis,et al.  The minimal scale invariant extension of the Standard Model , 2010, 1006.5916.

[60]  R. Foot,et al.  Stable mass hierarchies and dark matter from hidden sectors in the scale-invariant standard model , 2010, 1006.0131.

[61]  Hiren H. Patel,et al.  Vacuum stability, perturbativity, and scalar singlet dark matter , 2009, 0910.3167.

[62]  P. Ko Electroweak symmetry breaking and cold dark matter from strongly interacting hidden sector , 2007, 1012.0103.

[63]  R. Young,et al.  Dark matter, constrained minimal supersymmetric standard model, and lattice QCD. , 2009, Physical review letters.

[64]  J. McDonald,et al.  Gauge singlet scalar as inflaton and thermal relic dark matter , 2009, 0909.0520.

[65]  R. Young,et al.  Dark Matter, the MCSSM and lattice QCD , 2009, 0907.4177.

[66]  S. Love,et al.  Standard model Higgs boson-inflaton and dark matter , 2009, 0906.5595.

[67]  Jonathan L. Feng,et al.  Hidden charged dark matter , 2009, 0905.3039.

[68]  N. Okada,et al.  Classically conformal $B^-$ L extended Standard Model , 2009, 0902.4050.

[69]  Sean M. Carroll,et al.  Dark matter and dark radiation , 2008, 0810.5126.

[70]  J. Espinosa,et al.  Some cosmological implications of hidden sectors , 2008, 0809.3215.

[71]  R. Foot,et al.  Solution to the hierarchy problem from an almost decoupled hidden sector within a classically scale invariant theory , 2007, 0709.2750.

[72]  M. Tytgat,et al.  Electroweak symmetry breaking induced by dark matter , 2007, 0707.0633.

[73]  Gabe Shaughnessy,et al.  Singlet Higgs phenomenology and the electroweak phase transition , 2007, 0705.2425.

[74]  Anthony H. Gonzalez,et al.  Constraints on the Self-Interaction Cross Section of Dark Matter from Numerical Simulations of the Merging Galaxy Cluster 1E 0657–56 , 2007, 0704.0261.

[75]  J. Espinosa,et al.  Novel Effects in Electroweak Breaking from a Hidden Sector , 2007, hep-ph/0701145.

[76]  G. Miele,et al.  Relic neutrino decoupling including flavour oscillations , 2005, hep-ph/0506164.

[77]  B. Fields,et al.  New BBN limits on physics beyond the standard model from 4He , 2004, astro-ph/0408033.

[78]  E. Aprile,et al.  The XENON dark matter search experiment , 2004, 1206.6288.

[79]  D. Clowe,et al.  Direct constraints on the dark matter self-interaction cross-section from the merging galaxy cluster 1E0657-56 , 2003, astro-ph/0309303.

[80]  Mingxing Luo,et al.  Two-loop renormalization group equations in general gauge field theories , 2002, hep-ph/0211440.

[81]  M. Luo,et al.  Two-loop renormalization group equations in the standard model. , 2002, Physical review letters.

[82]  M. Luo,et al.  Renormalization group equations in gauge theories with multiple U(1) groups , 2002, hep-ph/0212152.

[83]  S. P. Martin Two loop effective potential for a general renormalizable theory and softly broken supersymmetry , 2001, hep-ph/0111209.

[84]  M. Trodden Electroweak Baryogenesis , 1998, hep-ph/9803479.

[85]  R. Hempfling The next-to-minimal Coleman-Weinberg model , 1996, hep-ph/9604278.

[86]  W. Bardeen On naturalness in the standard model , 1995 .

[87]  M. Sher Electroweak Higgs Potentials and Vacuum Stability , 1989 .

[88]  Wu,et al.  Understanding complex perturbative effective potentials. , 1987, Physical review. D, Particles and fields.

[89]  M. T. Vaughn,et al.  Two-loop renormalization group equations in a general quantum field theory: (III). Scalar quartic couplings , 1984 .

[90]  M. T. Vaughn,et al.  Two-loop renormalization group equations in a general quantum field theory (II). Yukawa couplings , 1984 .

[91]  M. T. Vaughn,et al.  Two Loop Renormalization Group Equations in a General Quantum Field Theory. 1. Wave Function Renormalization , 1983 .

[92]  S. Weinberg,et al.  Limits on Massless Particles , 1980 .

[93]  S. Weinberg,et al.  Symmetry Breaking and Scalar Bosons , 1976 .

[94]  E. Weinberg Radiative Corrections as the Origin of Spontaneous Symmetry Breaking , 1973, hep-th/0507214.