Critical points and Gröbner bases: the unmixed case

We consider the problem of computing critical points of the restriction of a polynomial map to an algebraic variety. This is of first importance since the global minimum of such a map is reached at a critical point. Thus, these points appear naturally in non-convex polynomial optimization which occurs in a wide range of scientific applications (control theory, chemistry, economics,...). Critical points also play a central role in recent algorithms of effective real algebraic geometry. Experimentally, it has been observed that Gröbner basis algorithms are efficient to compute such points. Therefore, recent software based on the so-called Critical Point Method are built on Gröbner bases engines. Let <i>f</i><sub>1</sub>,..., <i>f</i><sub><i>p</i></sub> be polynomials in Q[<i>x</i><sub>1</sub>,...,<i>x</i><sub><i>n</i></sub>] of degree <i>D</i>, <i>V</i> ⊂ C<sup><i>n</i></sup> be their complex variety and π<sub>1</sub> be the projection map (<i>x</i><sub>1</sub>,...,<i>x</i><sub><i>n</i></sub>) -> <i>x</i><sub>1</sub>. The critical points of the restriction of π<sub>1</sub> to <i>V</i> are defined by the vanishing of <i>f</i><sub>1</sub>,...,<i>f</i><sub><i>p</i></sub> and some maximal minors of the Jacobian matrix associated to <i>f</i><sub>1</sub>,...,<i>f</i><sub><i>p</i></sub>. Such a system is algebraically structured: the ideal it generates is the sum of a determinantal ideal and the ideal generated by <i>f</i><sub>1</sub>,...,<i>f</i><sub><i>p</i></sub>. We provide the first complexity estimates on the computation of Gröbner bases of such systems defining critical points. We prove that under genericity assumptions on <i>f</i><sub>1</sub>,...,<i>f</i><sub><i>p</i></sub>, the complexity is polynomial in the generic number of critical points, i.e. <i>D</i><sup><i>p</i></sup>(<i>D</i> - 1)<sup><i>n−p</i></sup>(n-1/p-1). More particularly, in the quadratic case <i>D</i> = 2, the complexity of such a Gröbner basis computation is polynomial in the number of variables <i>n</i> and exponential in <i>p</i>. We also give experimental evidence supporting these theoretical results.

[1]  David A. Cox,et al.  Ideals, Varieties, and Algorithms: An Introduction to Computational Algebraic Geometry and Commutative Algebra, 3/e (Undergraduate Texts in Mathematics) , 2007 .

[2]  Dima Grigoriev,et al.  Polynomial-time computing over quadratic maps i: sampling in real algebraic sets , 2004, computational complexity.

[3]  B. Bank,et al.  Polar Varieties and Efficient Real Equation Solving: The Hypersurface Case , 1996 .

[4]  Éric Schost,et al.  Polar varieties and computation of one point in each connected component of a smooth real algebraic set , 2003, ISSAC '03.

[5]  Alexander I. Barvinok,et al.  Feasibility testing for systems of real quadratic equations , 1992, STOC '92.

[6]  T. Willmore Algebraic Geometry , 1973, Nature.

[7]  Marc Giusti,et al.  A Gröbner Free Alternative for Polynomial System Solving , 2001, J. Complex..

[8]  Jean-Charles Faugère,et al.  Computing loci of rank defects of linear matrices using Gröbner bases and applications to cryptology , 2010, ISSAC.

[9]  C. Wampler,et al.  Basic Algebraic Geometry , 2005 .

[10]  Johan P. Hansen,et al.  INTERSECTION THEORY , 2011 .

[11]  Mohab Safey El Din,et al.  Testing Sign Conditions on a Multivariate Polynomial and Applications , 2007, Math. Comput. Sci..

[12]  Hazel Everett,et al.  The Voronoi Diagram of Three Lines , 2007, SCG '07.

[13]  Dima Grigoriev,et al.  Solving Systems of Polynomial Inequalities in Subexponential Time , 1988, J. Symb. Comput..

[14]  Mohab Safey El Din,et al.  Variant quantifier elimination , 2012, J. Symb. Comput..

[15]  Marc Giusti,et al.  Generalized polar varieties and an efficient real elimination , 2004, Kybernetika.

[16]  Jean-Charles Faugère,et al.  Efficient Computation of Zero-Dimensional Gröbner Bases by Change of Ordering , 1993, J. Symb. Comput..

[17]  Éric Schost,et al.  Properness Defects of Projections and Computation of at Least One Point in Each Connected Component of a Real Algebraic Set , 2004, Discret. Comput. Geom..

[18]  Marc Giusti,et al.  Generalized polar varieties: geometry and algorithms , 2005, J. Complex..

[19]  Melvin Hochster,et al.  Invariant theory and the generic perfection of determinantal loci , 1971 .

[20]  J. Faugère,et al.  On the complexity of Gröbner basis computation of semi-regular overdetermined algebraic equations , 2004 .

[21]  S. Basu,et al.  A New Algorithm to Find a Point in Every Cell Defined by a Family of Polynomials , 1998 .

[22]  Aldo Conca,et al.  On the Hilbert function of determinantal rings and their canonical module , 1994 .

[23]  François Anton AMS Mathematical review of the paper "Everett, Hazel; Lazard, Daniel (F-PARIS6-IP6); Lazard, Sylvain; Safey El Din, Mohab (F-PARIS6-IP6) The Voronoi diagram of three lines. (English summary) Discrete Comput. Geom. 42 (2009), no. 1, 94–130." , 2011 .

[24]  Laurent Busé,et al.  Resultants of determinantal varieties , 2004 .

[25]  Fabrice Rouillier,et al.  Real Solving for Positive Dimensional Systems , 2002, J. Symb. Comput..

[26]  Melvin Hochster,et al.  A class of perfect determinantal ideals , 1970 .

[27]  Gert-Martin Greuel,et al.  Introduction to Singularities and Deformations , 2007 .

[28]  D. Eisenbud Commutative Algebra: with a View Toward Algebraic Geometry , 1995 .

[29]  Chenqi Mou,et al.  Fast algorithm for change of ordering of zero-dimensional Gröbner bases with sparse multiplication matrices , 2011, ISSAC '11.

[30]  B. Bank,et al.  Polar varieties and efficient real elimination , 2000 .

[31]  I. Shafarevich Basic algebraic geometry , 1974 .

[32]  Mohab Safey El Din,et al.  Variant real quantifier elimination: algorithm and application , 2009, ISSAC '09.

[33]  David A. Cox,et al.  Ideals, Varieties, and Algorithms , 1997 .

[34]  A. Storjohann Algorithms for matrix canonical forms , 2000 .

[35]  Marie-Françoise Roy,et al.  On the combinatorial and algebraic complexity of Quanti erEliminationS , 1994 .

[36]  Fabrice Rouillier,et al.  Classification of the perspective-three-point problem, discriminant variety and real solving polynomial systems of inequalities , 2008, ISSAC '08.

[37]  Jiawang Nie,et al.  Algebraic Degree of Polynomial Optimization , 2008, SIAM J. Optim..

[38]  Jean-Charles Faugère,et al.  On the complexity of the generalized MinRank problem , 2011, J. Symb. Comput..

[39]  Jean Charles Faugère,et al.  A new efficient algorithm for computing Gröbner bases without reduction to zero (F5) , 2002, ISSAC '02.

[40]  Joos Heintz,et al.  On the Theoretical and Practical Complexity of the Existential Theory of Reals , 1993, Comput. J..

[41]  Marc Giusti,et al.  Polar Varieties, Real Equation Solving, and Data Structures: The Hypersurface Case , 1997, J. Complex..

[42]  Mohab Safey El Din,et al.  Properness defects of projections and computation of one point in each connected component of a real algebraic set , 2003 .

[43]  Éric Schost,et al.  On the geometry of polar varieties , 2009, Applicable Algebra in Engineering, Communication and Computing.