Electronic structures and spectral properties of endohedral fullerenes

Abstract Endohedral fullerenes belong to a new class of compounds which are technologically and scientifically important owing to their unique structures and optoelectronic properties. This review focuses on theoretical calculations and spectroscopic (electronic, vibrational, and nuclear magnetic resonance (NMR)) studies of endohedral fullerenes thus far published. A theoretical background, with various computational methods used for determining energy-optimized electronic structure and calculation of vibrational spectra, is presented. Further, theoretical and spectroscopic investigations of individual endohedral fullerenes are discussed. Such studies provide structural information about the carbon cage, position of the encapsulated species, and the degree of charge transfer. In particular, 13C NMR spectroscopy is indispensable for the determination of the cage symmetry. In some cases, NMR signals from 45Sc encapsulated species yield information about dynamic behavior inside the cage. Vis–NIR absorption spectra determine the HOMO–LUMO band-gap energy. IR and Raman spectroscopy play an important role in elucidating the nature of interaction between the cage and encapsulated species. Novel vibrations resulting from these interactions appear in the low-frequency region, and the corresponding force constants serve as a measure of the strength of their interaction.

[1]  B. Alder,et al.  THE GROUND STATE OF THE ELECTRON GAS BY A STOCHASTIC METHOD , 2010 .

[2]  D. Murphy,et al.  Superconductivity at 18 K in potassium-doped C60 , 1991, Nature.

[3]  Electrostatic potential, polarization, shielding, and charge transfer in endohedral complexes of the C60, C70, C76, C78, C82, and C84 clusters , 1993 .

[4]  M. Krause,et al.  Structure and stability of endohedral fullerene Sc3N@C80: A Raman, infrared, and theoretical analysis , 2001 .

[5]  Andrew M. Krause,et al.  Structural and Electronic Properties of Isomers of Sc2@C84(I, II, III): 13C NMR and IR/Raman Spectroscopic Studies , 2000 .

[6]  C. Thomsen,et al.  A Vibrational Spectroscopic Study of Endohedral Li@C60 Fullerenes* , 1997 .

[7]  Overhauser,et al.  Quantum oscillations from the cylindrical Fermi-surface sheet of potassium created by the charge-density wave. , 1992, Physical review. B, Condensed matter.

[8]  Takeshi Akasaka,et al.  Recent advances in the structural determination of endohedral metallofullerenes , 1998 .

[9]  Hideyuki Funasaka,et al.  13C and 139La NMR Studies of La2@C80: First Evidence for Circular Motion of Metal Atoms in Endohedral Dimetallofullerenes , 1997 .

[10]  Takeshi Akasaka,et al.  Endohedral dimetallofullerenes Sc2@C84 and La2@C80. Are the metal atoms still inside the fullerence cages? , 1996 .

[11]  A. M. Rao,et al.  Vibrational mode frequencies in C70 , 1993 .

[12]  T. Koopmans,et al.  Über die Zuordnung von Wellenfunktionen und Eigenwerten zu den Einzelnen Elektronen Eines Atoms , 1934 .

[13]  Marilyn M. Olmstead,et al.  Isolation and Structural Characterization of the Endohedral Fullerene Sc3N@C78 , 2001 .

[14]  G. Onida,et al.  Vibrational spectrum of C60: a bond-charge model calculation (Erratum) , 1992 .

[15]  S. Nagase,et al.  Bonding features in endohedral metallofullerenes. Topological analysis of the electron density distribution , 1999 .

[16]  S. Nagase,et al.  Structural Determination of the La@C82 Isomer , 2001 .

[17]  A. Bartl,et al.  New metallofullerenes in the size gap of C70 to C82: From La2@C72 to Sc3N@C80 , 2001 .

[18]  Yuji Kobayashi,et al.  Materials science: C66 fullerene encaging a scandium dimer , 2000, Nature.

[19]  R. O. Jones,et al.  The density functional formalism, its applications and prospects , 1989 .

[20]  S. H. Vosko,et al.  Accurate spin-dependent electron liquid correlation energies for local spin density calculations: a critical analysis , 1980 .

[21]  Takeshi Akasaka,et al.  Endohedral Metallofullerenes : New Spherical Cage Molecules with Interesting Properties , 1996 .

[22]  R. Tycko Electronic properties and phase transitions of alkali fullerides: Investigations by nuclear magnetic resonance spectroscopy , 1993 .

[23]  Zhu-de Xu,et al.  Production, Isolation, and Electronic Properties of Missing Fullerenes: Ca@C72 and Ca@C74 , 1998 .

[24]  Robert C. Haddon,et al.  Electronic structure, conductivity and superconductivity of alkali metal doped (C60) , 1992 .

[25]  R. Whetten,et al.  Fullerene Isomerism: Isolation of C2v,-C78 and D3-C78 , 1991, Science.

[26]  Sydney Leach,et al.  Electronic spectra and transitions of the fullerene C60 , 1992 .

[27]  A. Fisher,et al.  Small-bandgap endohedral metallofullerenes in high yield and purity , 1999, Nature.

[28]  S. Nagase,et al.  Vibrational Spectroscopy of Endohedral Dimetallofullerene, La2@C80 , 2000 .

[29]  M. Sakata,et al.  A Scandium Carbide Endohedral Metallofullerene: (Sc2 C2 )@C84. , 2001, Angewandte Chemie.

[30]  Seifert,et al.  Construction of tight-binding-like potentials on the basis of density-functional theory: Application to carbon. , 1995, Physical review. B, Condensed matter.

[31]  A. Becke Density-functional thermochemistry. III. The role of exact exchange , 1993 .

[32]  Takeshi Akasaka,et al.  A theoretical study of C80 and La2@C80 , 1995 .

[33]  J. Menéndez,et al.  Isotope effects on the Raman spectrum of buckminsterfullerene, C60 , 2003 .

[34]  Jerzy Cioslowski,et al.  Electronic Structure Calculations on Fullerenes and Their Derivatives , 1995 .

[35]  Dresselhaus,et al.  Force-constant model for the vibrational modes in C60. , 1992, Physical review. B, Condensed matter.

[36]  Adams,et al.  First-principles quantum molecular-dynamics study of the vibrations of icosahedral C60. , 1991, Physical review. B, Condensed matter.

[37]  Marilyn M. Olmstead,et al.  Isolation and Crystallographic Characterization of ErSc2N@C80: an Endohedral Fullerene Which Crystallizes with Remarkable Internal Order , 2000 .

[38]  Takeshi Akasaka,et al.  Unconventional cage structures of endohedral metallofullerenes , 1999 .

[39]  T. Sugai,et al.  Spectroscopic and structural study of Y2C2 carbide encapsulating endohedral metallofullerene: (Y2C2)@C82 , 2003 .

[40]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[41]  Hisanori Shinohara,et al.  Structure of Endohedral Dimetallofullerene Sc{sub 2}{at}C{sub 84} , 1997 .

[42]  F. Zerbetto,et al.  The Raman activity of and : a computational semiempirical study , 1996 .

[43]  J. Campanera,et al.  Bonding within the Endohedral Fullerenes Sc3N@C78 and Sc3N@C80 as Determined by Density Functional Calculations and Reexamination of the Crystal Structure of {Sc3N@C78}·Co(OEP)}·1.5(C6H6)·0.3(CHCl3) , 2002 .

[44]  A. Anderson,et al.  The Raman effect , 1971 .

[45]  Adams,et al.  Isotopically resolved Raman spectra of C60. , 1994, Physical review letters.

[46]  F. Matthias Bickelhaupt,et al.  Chemistry with ADF , 2001, J. Comput. Chem..

[47]  J. Rehr,et al.  Theoretical approaches to x-ray absorption fine structure , 2000 .

[48]  Sanguinetti,et al.  Dynamical properties and related optical spectra of fullerenes: The bond-charge-model description. , 1994, Physical review. B, Condensed matter.

[49]  A. Becke,et al.  Density-functional exchange-energy approximation with correct asymptotic behavior. , 1988, Physical review. A, General physics.

[50]  Adams,et al.  Empirical bond polarizability model for fullerenes. , 1996, Physical review. B, Condensed matter.

[51]  Hisanori Shinohara,et al.  Determination of the cage structure of Sc@C82 by synchrotron powder diffraction , 1998 .

[52]  Adams,et al.  Polymerized C60 studied by first-principles molecular dynamics. , 1994, Physical review. B, Condensed matter.

[53]  Zhu-de Xu,et al.  Production and Isolation of Ca@C82 (I−IV) and Ca@C84 (I,II) Metallofullerenes , 1996 .

[54]  P. Eklund,et al.  Fullerene Polymers and Fullerene Polymer Composites , 2000 .

[55]  M. Pederson,et al.  First principles determination of the interatomic force-constant tensor of the fullerene molecule , 1993 .

[56]  R. Smalley,et al.  Ab initio theoretical predictions of C28, C28H4, C28F4, (Ti@C28)H4, and M@C28 (M=Mg, Al, Si, S, Ca, Sc, Ti, Ge, Zr, and Sn) , 1993 .

[57]  A. Bartl,et al.  Preparation, isolation and characterisation of Eu@C74: the first isolated europium endohedral fullerene , 1998 .

[58]  M. Dresselhaus,et al.  Raman Scattering in Fullerenes , 1996 .

[59]  Hal J. Rosen,et al.  Vibrational Raman and infrared spectra of chromatographically separated C60 and C70 fullerene clusters , 1991 .

[60]  O. Boltalina,et al.  Electron Affinity of Some Endohedral Lanthanide Fullerenes , 1997 .

[61]  Adrian P. Sutton,et al.  Electronic Structure of Materials , 1993 .

[62]  Eugene D. Fleischmann,et al.  Endohedral complexes: Atoms and ions inside the C60 cage , 1991 .

[63]  R. Smalley,et al.  Threshold photodetachment of cold C−60 , 1991 .

[64]  Wang,et al.  First-principles study of vibrational modes in icosahedral C60. , 1993, Physical review. B, Condensed matter.

[65]  B. Chase,et al.  Vibrational spectroscopy of fullerenes (C60 and C70). Temperature dependant studies , 1992 .

[66]  M. Sakata,et al.  Triangle Scandium Cluster Imprisoned in a Fullerene Cage , 1999 .

[67]  M. Hulman,et al.  Low-energy vibrations in Sc2@C84 and Tm@C82 metallofullerenes with different carbon cages , 2000 .

[68]  M. Hulman,et al.  Diatomic metal encapsulates in fullerene cages: A Raman and infrared analysis of C84 and Sc2@C84 with D2d symmetry , 1999 .

[69]  Shigeru Nagase,et al.  Theoretical study of endohedral metallofullerenes: Sc3−nLanN@C80 (n=0–3) , 2001, J. Comput. Chem..

[70]  T. Uruga,et al.  Electronic structure of Eu@C60 studied by XANES and UV–VIS absorption spectra , 2000 .

[71]  L. B. Ebert Science of fullerenes and carbon nanotubes , 1996 .

[72]  K. Nakamoto,et al.  Application of the Correlation Method to Vibrational Spectra of C60 and Other Fullerenes: Predicting the Number of IR- and Raman-Active Bands , 2000 .

[73]  H. Shinohara,et al.  Isolation and Characterization of Er@C60 , 2000 .

[74]  M. Knupfer,et al.  Monometallofullerene Tm@C82: proof of an encapsulated divalent Tm ion by high energy spectroscopy , 1997 .

[75]  J. Heflin,et al.  Enhanced Nonlinear Optical Response Of An Endohedral Metallofullerene Through Metal-to-cage Charge Transfer , 1997, QELS '97., Summaries of Papers Presented at the Quantum Electronics and Laser Science Conference.

[76]  A. Oshiyama,et al.  Cohesive mechanism and energy bands of solid C60. , 1991, Physical review letters.

[77]  P. Hohenberg,et al.  Inhomogeneous Electron Gas , 1964 .

[78]  S. Nagase,et al.  Recent progress in endohedral dimetallofullerenes , 1997 .

[79]  M. Gross,et al.  Isolation and Spectral Properties of Kr@C60, a Stable van der Waals Molecule , 1999 .

[80]  W. Kohn,et al.  Self-Consistent Equations Including Exchange and Correlation Effects , 1965 .

[81]  S. Eisebitt,et al.  La@C60: A metallic endohedral fullerene , 2001 .

[82]  M. S. de Vries,et al.  Atoms in carbon cages: the structure and properties of endohedral fullerenes , 1993, Nature.

[83]  J. Menéndez,et al.  Isotope effect on the Raman spectrum of the pentagonal-pinch mode in C 60 , 1997 .

[84]  S. Fujiki,et al.  Dy@ C60: Evidence for endohedral structure and electron transfer , 2001 .

[85]  David Feller,et al.  Basis Set Selection for Molecular Calculations , 1986 .

[86]  F. Zerbetto,et al.  Low-lying electronic excited states of Buckminsterfullerene anions , 1992 .

[87]  P. Fowler,et al.  Molecular graphs, point groups, and fullerenes , 1992 .

[88]  Shigeru Nagase,et al.  Endofullerenes : a new family of carbon clusters , 2002 .

[89]  Shigeru Nagase,et al.  ISOLATION AND CHARACTERIZATION OF C80 , 1996 .

[90]  S. Lebedkin,et al.  A spectroscopic study of M@C82 metallofullerenes: Raman, far-infrared, and neutron scattering results , 1998 .

[91]  E. Hajdu,et al.  Materials science: A stable non-classical metallofullerene family , 2000, Nature.

[92]  Parr,et al.  Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. , 1988, Physical review. B, Condensed matter.

[93]  Stefano Baroni,et al.  Vibrational and dielectric properties of C60 from density‐functional perturbation theory , 1994 .

[94]  Lucas,et al.  High-resolution electron-energy-loss spectroscopy of thin films of C60 on Si(100). , 1991, Physical review letters.

[95]  Eiji Ōsawa,et al.  Endohedral Metallofullerenes. Are the Isolated Pentagon Rule and Fullerene Structures Always Satisfied , 1997 .

[96]  W. Heisenberg,et al.  Zur Quantentheorie der Molekeln , 1924 .

[97]  S. C. O'brien,et al.  C60: Buckminsterfullerene , 1985, Nature.

[98]  Harris Simplified method for calculating the energy of weakly interacting fragments. , 1985, Physical review. B, Condensed matter.

[99]  Isao Ikemoto,et al.  NMR characterization of isomers of C78, C82 and C84 fullerenes , 1992, Nature.

[100]  Wang,et al.  Accurate and simple analytic representation of the electron-gas correlation energy. , 1992, Physical review. B, Condensed matter.

[101]  Shigeru Nagase,et al.  Structures and electronic states of M@C82 (M=Sc, Y, La and lanthanides) , 1998 .