Quantification of free ligand conformational preferences by NMR and their relationship to the bioactive conformation☆

Graphical abstract

[1]  William Greenlee,et al.  Design and validation of bicyclic iminopyrimidinones as beta amyloid cleaving enzyme-1 (BACE1) inhibitors: conformational constraint to favor a bioactive conformation. , 2012, Journal of medicinal chemistry.

[2]  F. Allen The Cambridge Structural Database: a quarter of a million crystal structures and rising. , 2002, Acta crystallographica. Section B, Structural science.

[3]  N. Metropolis,et al.  The Monte Carlo method. , 1949 .

[4]  D. Cumming,et al.  Virtual and solution conformations of oligosaccharides. , 1987, Biochemistry.

[5]  J. Fried,et al.  Counter-current distribution studies on streptomycin; the tautomerism of streptomycin. , 1948, The Journal of biological chemistry.

[6]  R. Smits,et al.  Ligand based design of novel histamine H₄ receptor antagonists; fragment optimization and analysis of binding kinetics. , 2012, Bioorganic & medicinal chemistry letters.

[7]  Jonas Boström,et al.  Conformational energy penalties of protein-bound ligands , 1998, J. Comput. Aided Mol. Des..

[8]  W. Vangunsteren,et al.  CONFORMATIONAL DYNAMICS DETECTED BY NUCLEAR MAGNETIC-RESONANCE NOE VALUES AND J-COUPLING CONSTANTS , 1988 .

[9]  Serdar Durdagi,et al.  Antihypertensive Drug Valsartan in Solution and at the AT1 Receptor: Conformational Analysis, Dynamic NMR Spectroscopy, in Silico Docking, and Molecular Dynamics Simulations , 2009, J. Chem. Inf. Model..

[10]  J. Axelsen,et al.  Physical interpretation of residual dipolar couplings in neutral aligned media. , 2002, Journal of the American Chemical Society.

[11]  Min Zhou,et al.  Understanding noncovalent interactions: ligand binding energy and catalytic efficiency from ligand-induced reductions in motion within receptors and enzymes. , 2004, Angewandte Chemie.

[12]  G. Marius Clore,et al.  Use of dipolar 1H–15N and 1H–13C couplings in the structure determination of magnetically oriented macromolecules in solution , 1997, Nature Structural Biology.

[13]  V. Saudek,et al.  Gradient-tailored excitation for single-quantum NMR spectroscopy of aqueous solutions , 1992, Journal of biomolecular NMR.

[14]  Robin Taylor,et al.  New software for searching the Cambridge Structural Database and visualizing crystal structures. , 2002, Acta crystallographica. Section B, Structural science.

[15]  J. Snyder,et al.  A Test of the Single-Conformation Hypothesis in the Analysis of NMR Data for Small Polar Molecules: A Force Field Comparison , 1999 .

[16]  Mark J. Forster,et al.  Rationalizing nuclear overhauser effect data for compounds adopting multiple‐solution conformations , 1994, J. Comput. Chem..

[17]  D. Patel,et al.  Encapsulating streptomycin within a small 40-mer RNA. , 2003, Chemistry & biology.

[18]  W. Hull,et al.  15N‐NMR Spectroscopy, 15. The Structure of Streptomycin in Solution , 1980 .

[19]  Michael H. Abraham,et al.  Hydrogen bonding. Part 9. Solute proton donor and proton acceptor scales for use in drug design , 1989 .

[20]  E. García-Junceda,et al.  Molecular recognition of aminoglycoside antibiotics by bacterial defence proteins: NMR study of the structural and conformational features of streptomycin inactivation by Bacillus subtilis aminoglycoside-6-adenyl transferase. , 2005, Chemistry.

[21]  E. Baker,et al.  The Crystal Structures of Substrate and Nucleotide Complexes of Enterococcus faecium Aminoglycoside-2′′-Phosphotransferase-IIa [APH(2′′)-IIa] Provide Insights into Substrate Selectivity in the APH(2′′) Subfamily , 2009, Journal of bacteriology.

[22]  C L Brooks,et al.  Do active site conformations of small ligands correspond to low free-energy solution structures? , 1998, Journal of computer-aided molecular design.

[23]  C. W. Hilbers,et al.  Studies of the solution structure of the bleomycin-A2-zinc complex by means of two-dimensional NMR spectroscopy and distance geometry calculations. , 1988, European journal of biochemistry.

[24]  D. Allison,et al.  Erythromycin B: conformational analysis and antibacterial activity , 2011 .

[25]  R. Brüschweiler,et al.  Multi-conformational peptide dynamics derived from NMR data: A new search algorithm and its application to antamanide , 1991, Journal of biomolecular NMR.

[26]  Clark R. Landis,et al.  Elucidation of solution structures by conformer population analysis of NOE data , 1991 .

[27]  D. Case,et al.  Molecular Dynamics Simulations of Nucleic Acids with a Generalized Born Solvation Model , 2000 .

[28]  S. Neidle,et al.  The crystal and molecular structure of streptomycin oxime selenate tetrahydrate , 1978, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[29]  Sheng-Yong Yang,et al.  Pharmacophore modeling and applications in drug discovery: challenges and recent advances. , 2010, Drug discovery today.

[30]  Y. Ishii,et al.  Alignment of Biopolymers in Strained Gels: A New Way To Create Detectable Dipole−Dipole Couplings in High-Resolution Biomolecular NMR , 2000 .

[31]  Chong-Hwan Chang,et al.  Cyclic HIV protease inhibitors: synthesis, conformational analysis, P2/P2' structure-activity relationship, and molecular recognition of cyclic ureas. , 1996, Journal of medicinal chemistry.

[32]  M. Reed,et al.  Complete assignment of hyaluronan oligosaccharides up to hexasaccharides. , 2006, Carbohydrate research.

[33]  Martin Stahl,et al.  Small Molecule Conformational Preferences Derived from Crystal Structure Data. A Medicinal Chemistry Focused Analysis , 2008, J. Chem. Inf. Model..

[34]  E. Serpersu,et al.  Cloning, overexpression, and purification of aminoglycoside antibiotic 3-acetyltransferase-IIIb: conformational studies with bound substrates. , 2001, Biochemistry.

[35]  M C Nicklaus,et al.  Conformational changes of small molecules binding to proteins. , 1995, Bioorganic & medicinal chemistry.

[36]  Krista Joosten,et al.  PDB_REDO: constructive validation, more than just looking for errors , 2012, Acta crystallographica. Section D, Biological crystallography.

[37]  S. Martin,et al.  Ligand preorganization may be accompanied by entropic penalties in protein-ligand interactions. , 2006, Angewandte Chemie.

[38]  Christopher T. Walsh,et al.  Lessons from natural molecules , 2004, Nature.

[39]  O Jardetzky,et al.  On the nature of molecular conformations inferred from high-resolution NMR. , 1980, Biochimica et biophysica acta.

[40]  Tjelvar S. G. Olsson,et al.  The good, the bad and the twisted: a survey of ligand geometry in protein crystal structures , 2012, Journal of Computer-Aided Molecular Design.

[41]  Richard A. Friesner,et al.  Integrated Modeling Program, Applied Chemical Theory (IMPACT) , 2005, J. Comput. Chem..

[42]  V. Ramakrishnan,et al.  Functional insights from the structure of the 30S ribosomal subunit and its interactions with antibiotics , 2000, Nature.

[43]  W. M. Westler,et al.  The "CUPID" method for calculating the continuous probability distribution of rotamers from NMR data , 1992 .

[44]  N. Piganeau,et al.  Aptamer structures: a preview into regulatory pathways? , 2003, Chemistry & biology.

[45]  T Mavromoustakos,et al.  An effort to understand the molecular basis of hypertension through the study of conformational analysis of losartan and sarmesin using a combination of nuclear magnetic resonance spectroscopy and theoretical calculations. , 1999, Journal of medicinal chemistry.

[46]  C. Farés,et al.  Simultaneous determination of the conformation and relative configuration of archazolide a by using nuclear overhauser effects, J couplings, and residual dipolar couplings. , 2008, Angewandte Chemie.

[47]  Robin Taylor,et al.  Short Nonbonded Contact Distances in Organic Molecules and Their Use as Atom-Clash Criteria in Conformer Validation and Searching , 2011, J. Chem. Inf. Model..

[48]  R. Bazzo,et al.  NMR Analysis of Molecular Flexibility in Solution: A New Method for the Study of Complex Distributions of Rapidly Exchanging Conformations. Application to a 13-Residue Peptide with an 8-Residue Loop , 1995 .

[49]  T. D. Brock,et al.  A Molecular Model for Chemical and Biological Differences between Streptomycin and Dihydrostreptomycin , 1964, Nature.

[50]  F. D. Leeuw,et al.  The relationship between proton-proton NMR coupling constants and substituent electronegativities—I : An empirical generalization of the karplus equation , 1980 .