Some Mathematical Models for Branching Processes

Abstract : This paper considers a number of stochastic processes which have been used as models for branching phenomena. Particular concern was given to limiting theorems and limiting distributions giving the behavior of the systems studied after long periods of time. One pattern recurs often enough to make the following statement plausible, although a general mathematical formulation has not been given.

[1]  M. Kreĭn,et al.  Linear operators leaving invariant a cone in a Banach space , 1950 .

[2]  M. S. Bartlett,et al.  Some Evolutionary Stochastic Processes , 1949 .

[3]  D. Kendall Stochastic Processes and Population Growth , 1949 .

[4]  R. Otter The Multiplicative Process , 1949 .

[5]  David G. Kendall,et al.  ON THE ROLE OF VARIABLE GENERATION TIME IN THE DEVELOPMENT OF A STOCHASTIC BIRTH PROCESS , 1948 .

[6]  P. H. Leslie SOME FURTHER NOTES ON THE USE OF MATRICES IN POPULATION MATHEMATICS , 1948 .

[7]  T. E. Harris,et al.  On the Theory of Age-Dependent Stochastic Branching Processes. , 1948, Proceedings of the National Academy of Sciences of the United States of America.

[8]  C. J. Everett,et al.  Multiplicative Systems in Several Variables. Part I , 1948 .

[9]  D. Kendall On the Generalized "Birth-and-Death" Process , 1948 .

[10]  J. Doob Renewal theory from the point of view of the theory of probability , 1948 .

[11]  J. Hadamard,et al.  Two works on iteration and related questions , 1944 .

[12]  G. Teissier,et al.  Théorie analytique des associations biologiques , 1941 .

[13]  J. Doob Regularity properties of certain families of chance variables , 1940 .

[14]  R. Punnett,et al.  The Genetical Theory of Natural Selection , 1930, Nature.

[15]  P. Fatou,et al.  Sur les équations fonctionnelles , 1920 .

[16]  Daron Acemoglu,et al.  Discussion Papers , 2007 .

[17]  G. Koenigs,et al.  Recherches sur les intégrales de certaines équations fonctionnelles , 1884 .

[18]  F. Galton,et al.  On the Probability of the Extinction of Families , 1875 .

[19]  Ernst Schröder,et al.  Ueber iterirte Functionen , 1870 .