Numerically pricing convertible bonds under stochastic volatility or stochastic interest rate with an ADI-based predictor-corrector scheme

Abstract In this paper, the pricing problem for the American-style convertible bonds with the Heston stochastic volatility and that with the Cox–Ingersoll–Ross (CIR) stochastic interest rate are both considered. Due to the complexity of both problems, resulting from an additional stochastic factor, it is almost impossible to find any analytical solution. Therefore, a predictor–corrector scheme is chosen as the numerical scheme to solve the partial differential equations (PDEs), with the Douglas–Rachford (D–R) method being utilized as one of the Alternating Direction Implicit (ADI) methods for the correction step to obtain the numerical solution. Finally, the accuracy of our approach is numerically verified, and different properties of convertible bond price and the optimal conversion price are also demonstrated and discussed through examples.

[1]  Eduardo S. Schwartz,et al.  Convertible Bonds: Valuation and Optimal Strategies for Call and Conversion , 1977 .

[2]  Peter A. Forsyth,et al.  A finite volume approach for contingent claims valuation , 2001 .

[3]  Kjell G. Nyborg The use and pricing of convertible bonds , 1996 .

[4]  R. C. Merton,et al.  Theory of Rational Option Pricing , 2015, World Scientific Reference on Contingent Claims Analysis in Corporate Finance.

[5]  Jonathan E. Ingersoll,et al.  A Contingent-Claims Valuation of Convertible Securities , 1977, World Scientific Reference on Contingent Claims Analysis in Corporate Finance.

[6]  Ali Bora Yigitbasioglu Pricing Convertible Bonds with Interest Rate, Equity, Credit, and FX Risk , 2001 .

[7]  Ali Bora Yigitbasioglu,et al.  Pricing Convertible Bonds by Simulation , 2004 .

[8]  Weizhong Dai,et al.  A second‐order ADI scheme for three‐dimensional parabolic differential equations , 1998 .

[9]  Kostas Tsiveriotis,et al.  Valuing Convertible Bonds with Credit Risk , 1998 .

[10]  Donald R. Chambers,et al.  A Tree Model for Pricing Convertible Bonds with Equity, Interest Rate, and Default Risk , 2007 .

[11]  A. Irturk,et al.  Term Structure of Interest Rates , 2006 .

[12]  Toshikazu Kimura,et al.  Monte Carlo analysis of convertible bonds with reset clauses , 2006, Eur. J. Oper. Res..

[13]  Alan G. White,et al.  The Pricing of Options on Assets with Stochastic Volatilities , 1987 .

[14]  Mao-Wei Hung,et al.  Pricing Convertible Bonds Subject to Default Risk , 2002 .

[15]  Song-Ping Zhu,et al.  A predictor-corrector scheme based on the ADI method for pricing American puts with stochastic volatility , 2011, Comput. Math. Appl..

[16]  Giovanni Barone-Adesi,et al.  Two-factor convertible bonds valuation using the method of characteristics/finite elements , 2003 .

[17]  Song-Ping Zhu,et al.  Stock loan valuation under a stochastic interest rate model , 2015, Comput. Math. Appl..

[18]  Jin Zhang,et al.  A new predictor-corrector scheme for valuing American puts , 2011, Appl. Math. Comput..

[19]  F. Black,et al.  The Pricing of Options and Corporate Liabilities , 1973, Journal of Political Economy.

[20]  Terry A. Marsh,et al.  Stochastic Processes for Interest Rates and Equilibrium Bond Prices , 1983 .

[21]  Axel H. Kind,et al.  Simulation-Based Pricing of Convertible Bonds , 2008 .

[22]  Fahuai Yi,et al.  A free boundary problem arising from pricing convertible bond , 2010 .

[23]  J. Strikwerda Finite Difference Schemes and Partial Differential Equations , 1989 .

[24]  Oldrich A. Vasicek An equilibrium characterization of the term structure , 1977 .

[25]  H. G. Landau,et al.  Heat conduction in a melting solid , 1950 .

[26]  Tinne Haentjens,et al.  ADI finite difference schemes for the Heston-Hull-White PDE , 2011 .

[27]  Nobuyuki Oda,et al.  Market Price Analysis and Risk Management for Convertible Bonds , 1999 .

[28]  S. Ross,et al.  The valuation of options for alternative stochastic processes , 1976 .

[29]  S. Ross,et al.  A theory of the term structure of interest rates'', Econometrica 53, 385-407 , 1985 .

[30]  Song‐Ping Zhu A closed-form analytical solution for the valuation of convertible bonds with constant dividend yield , 2006, The ANZIAM Journal.

[31]  S. Ikonen,et al.  Efficient numerical methods for pricing American options under stochastic volatility , 2008 .

[32]  Song-Ping Zhu,et al.  A closed-form pricing formula for European options under the Heston model with stochastic interest rate , 2018, J. Comput. Appl. Math..

[33]  A. D. Sneyd,et al.  An alternating-direction implicit scheme for parabolic equations with mixed derivatives , 1988 .

[34]  J. Butcher Numerical methods for ordinary differential equations , 2003 .

[35]  S. Heston A Closed-Form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options , 1993 .

[36]  H. H. Rachford,et al.  The Numerical Solution of Parabolic and Elliptic Differential Equations , 1955 .

[37]  Per Lötstedt,et al.  Boundary Values and Finite Difference Methods for the Single Factor Term Structure Equation , 2009 .

[38]  P. Wilmott,et al.  Option pricing: Mathematical models and computation , 1994 .

[39]  Eduardo S. Schwartz,et al.  Analyzing Convertible Bonds , 1980, Journal of Financial and Quantitative Analysis.

[40]  Willem Hundsdorfer,et al.  Accuracy and stability of splitting with stabilizing corrections , 2002 .

[41]  Xiaoping Lu,et al.  Pricing puttable convertible bonds with integral equation approaches , 2018, Comput. Math. Appl..

[42]  Stephen A. Ross,et al.  An Analysis of Variable Rate Loan Contracts , 1980 .