Unravelling the crystal structure of Nd5.8WO12−δ and Nd5.7W0.75Mo0.25O12−δ mixed ionic electronic conductors

The crystal structures of non-substituted and Mo-substituted neodymium tungstates are described in detail through neutron diffraction and high-resolution X-ray diffraction. Combined X-ray and neutron diffraction refinements and electron probe micro-analysis were employed to locate Mo atoms in the crystal structure of Nd6−yW1−zMozO12−δ (z = 0, 0.25), while X-ray absorption spectroscopy in the near-edge regions confirmed no changes in the oxidation states of Nd and W.

[1]  A. Vourros,et al.  An Electrochemical Haber-Bosch Process , 2020 .

[2]  R. Dittmeyer,et al.  Crystal structure of Mo-substituted lanthanum tungstate La5.4W1−y Mo y O12−δ (0 ≤ y ≤ 0.2) studied by X-ray and neutron diffraction , 2019, Journal of Applied Crystallography.

[3]  J. M. Serra,et al.  Mixed proton and electron conducting double perovskite anodes for stable and efficient tubular proton ceramic electrolysers , 2019, Nature Materials.

[4]  F. d’Acapito,et al.  The LISA beamline at ESRF. , 2019, Journal of synchrotron radiation.

[5]  S. Haile,et al.  Protonic ceramic electrochemical cells for hydrogen production and electricity generation: exceptional reversibility, stability, and demonstrated faradaic efficiency , 2019, Energy & Environmental Science.

[6]  E. R. Losilla,et al.  Metal-Doping of La5.4MoO11.1 Proton Conductors: Impact on the Structure and Electrical Properties. , 2018, Inorganic chemistry.

[7]  J. M. Serra,et al.  Chemical stability in H2S and creep characterization of the mixed protonic conductor Nd5.5WO11.25-δ , 2018 .

[8]  S. Haile,et al.  Exceptional power density and stability at intermediate temperatures in protonic ceramic fuel cells , 2018 .

[9]  Alan A. Coelho,et al.  TOPAS and TOPAS-Academic: an optimization program integrating computer algebra and crystallographic objects written in C++ , 2018 .

[10]  O. Guillon,et al.  Ion-Conducting Ceramic Membrane Reactors for High-Temperature Applications , 2017 .

[11]  J. M. Serra,et al.  Thermo-electrochemical production of compressed hydrogen from methane with near-zero energy loss , 2017 .

[12]  J. M. Serra,et al.  On the ionic character of H2 separation through mixed conducting Nd5.5W0.5Mo0.5O11.25−δ membrane , 2017 .

[13]  A. Hoser,et al.  E9: The Fine Resolution Powder Diffractometer (FIREPOD) at BER II , 2017 .

[14]  R. Dittmeyer,et al.  Crystal structure of Re‐substituted lanthanum tungstate La5.4W1−yReyO12–δ (0 ≤ y ≤ 0.2) studied by neutron diffraction , 2016 .

[15]  J. M. Serra,et al.  Direct conversion of methane to aromatics in a catalytic co-ionic membrane reactor , 2016, Science.

[16]  J. M. Serra,et al.  Nanoscale order in the frustrated mixed conductor La5.6WO12−δ , 2016 .

[17]  A. Magrasó,et al.  Comparison of the local and the average crystal structure of proton conducting lanthanum tungstate and the influence of molybdenum substitution. , 2016, Dalton transactions.

[18]  J. M. Serra,et al.  Nd5.5W1−xUxO11.25−δ system: Electrochemical characterization and hydrogen permeation study , 2015 .

[19]  Zuoan Li,et al.  Hydrogen permeation, water splitting and hydration kinetics in Nd5.4Mo0.3W0.7O12−δ , 2015 .

[20]  J. M. Serra,et al.  Transport properties and oxidation and hydration kinetics of the proton conductor Mo doped Nd5.5WO11.25−δ , 2014 .

[21]  Tsunehiro Tanaka,et al.  Local Structure of Pr, Nd, and Sm Complex Oxides and Their X-ray Absorption Near Edge Structure Spectra , 2014 .

[22]  A. Magrasó,et al.  Effects of the La/W ratio and doping on the structure, defect structure, stability and functional properties of proton-conducting lanthanum tungstate La28−xW4+xO54+δ. A review , 2014 .

[23]  A. Magrasó,et al.  Hydrogen permeation characteristics of La27Mo1.5W3.5O55.5 , 2014 .

[24]  J. M. Serra,et al.  Optimization of the mixed protonic–electronic conducting materials based on (Nd5/6Ln1/6)5.5WO11.25−δ , 2014 .

[25]  J. M. Serra,et al.  Solid State Transport and Hydrogen Permeation in the System Nd5.5W1–xRexO11.25−δ , 2014 .

[26]  J. M. Serra,et al.  Synthesis and characterization of nonsubstituted and substituted proton-conducting La(6-x)WO(12-y). , 2013, Inorganic chemistry.

[27]  J. M. Serra,et al.  Enhanced H2 separation through mixed proton-electron conducting membranes based on La5.5 W0.8 M0.2 O11.25-δ. , 2013, ChemSusChem.

[28]  A. Streun,et al.  The Materials Science beamline upgrade at the Swiss Light Source , 2013, Journal of synchrotron radiation.

[29]  A. Mancini,et al.  Local Structure of Proton-Conducting Lanthanum Tungstate La28-xW4+xO54+δ: a Combined Density Functional Theory and Pair Distribution Function Study , 2013 .

[30]  Brian H. Toby,et al.  GSAS‐II: the genesis of a modern open‐source all purpose crystallography software package , 2013 .

[31]  T. Norby,et al.  Defect structure and its nomenclature for mixed conducting lanthanum tungstates La28–xW4+xO54+3x/2 , 2012 .

[32]  M. Islam,et al.  Complete structural model for lanthanum tungstate: a chemically stable high temperature proton conductor by means of intrinsic defects , 2012 .

[33]  J. M. Serra,et al.  Hydrogen separation and stability study of ceramic membranes based on the system Nd5LnWO12 , 2011 .

[34]  N. Bonanos,et al.  Conductivity, transport number measurements and hydration thermodynamics of BaCe0.2Zr0.7Y(0.1 − ξ)NiξO(3 − δ) , 2011 .

[35]  B. Schmitt,et al.  Instrumental profile of MYTHEN detector in Debye-Scherrer geometry , 2010 .

[36]  John S. O. Evans,et al.  Advanced Input Files & Parametric Quantitative Analysis Using Topas , 2010 .

[37]  A. Magrasó,et al.  New crystal structure and characterization of lanthanum tungstate "La6WO12" prepared by freeze-drying synthesis. , 2009, Dalton transactions.

[38]  N. Bonanos,et al.  Structural and conductivity study of the proton conductor BaCe(0.9−x)ZrxY0.1O(3−δ) at intermediate temperatures , 2009 .

[39]  J. M. Serra,et al.  Preparation and Characterization of Nanocrystalline Mixed Proton−Electronic Conducting Materials Based on the System Ln6WO12 , 2009 .

[40]  Y. Hitomi,et al.  XAFS Study of Tungsten L1- and L3-Edges: Structural Analysis of WO3 Species Loaded on TiO2 as a Catalyst for Photo-oxidation of NH3 , 2008 .

[41]  R. Haugsrud Defects and transport properties in Ln6WO12 (Ln = La, Nd, Gd, Er) , 2007 .

[42]  B. Toby R factors in Rietveld analysis: How good is good enough? , 2006, Powder Diffraction.

[43]  M Newville,et al.  ATHENA, ARTEMIS, HEPHAESTUS: data analysis for X-ray absorption spectroscopy using IFEFFIT. , 2005, Journal of synchrotron radiation.

[44]  S. Phillpot,et al.  Mechanism of the Cubic‐to‐Tetragonal Phase Transition in Zirconia and Yttria‐Stabilized Zirconia by Molecular‐Dynamics Simulation , 2004 .

[45]  Olav Bolland,et al.  Integration of H2-separating membrane technology in gas turbine processes for CO2 capture , 2004 .

[46]  H. Iwahara,et al.  Protonic conduction in Zr-substituted BaCeO3 , 2000 .

[47]  G. Marnellos,et al.  Ammonia synthesis at atmospheric pressure , 1998, Science.

[48]  A. Fitch,et al.  The High Resolution Powder Diffraction Beam Line at ESRF , 1996, Journal of research of the National Institute of Standards and Technology.

[49]  Armel Le Bail,et al.  Ab-initio structure determination of LiSbWO6 by X-ray powder diffraction , 1988 .

[50]  P. Eisenberger,et al.  Extended x-ray absorption fine structure—its strengths and limitations as a structural tool , 1981 .

[51]  D. T. Cromer,et al.  Anomalous dispersion calculations near to and on the long-wavelength side of an absorption edge , 1981 .

[52]  P. Lee,et al.  Ab initio calculations of amplitude and phase functions for extended x-ray absorption fine structure spectroscopy , 1979 .

[53]  R. D. Shannon Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides , 1976 .

[54]  J. S. Anderson,et al.  Solid State Chemistry , 1973, Nature.

[55]  H. Rietveld A profile refinement method for nuclear and magnetic structures , 1969 .

[56]  J. M. Serra,et al.  Tailoring mixed ionic–electronic conduction in H2 permeable membranes based on the system Nd5.5W1−xMoxO11.25−δ , 2015 .

[57]  G. Henderson,et al.  X-ray absorption near-edge structure (XANES) spectroscopy , 2014 .