Super Rsk-algorithms and Super Plactic Monoid

We construct the analog of the plactic monoid for the super semistandard Young tableaux over a signed alphabet. This is done by developing a generalization of the Knuth's relations. Moreover we get generalizations of Greene's invariants and Young–Pieri rule. A generalization of the symmetry theorem in the signed case is also obtained. Except for this last result, all the other results are proved without restrictions on the orderings of the alphabets.

[1]  Carol Bult,et al.  PERMUTATIONS , 1994 .

[2]  Amitai Regev,et al.  Hook young diagrams with applications to combinatorics and to representations of Lie superalgebras , 1987 .

[3]  J. B. Remmel,et al.  Hook flag characters and their combinatorics , 1985 .

[4]  A. Berele,et al.  Applications of hook Young diagrams to P.I. Algebras , 1983 .

[5]  W. Fulton Young Tableaux: With Applications to Representation Theory and Geometry , 1996 .

[6]  Plethysmsfor representations of lie superalgebras with applications to P. I algebras , 1994 .

[7]  Gian-Carlo Rota,et al.  Invariant theory and superalgebras , 1987 .

[8]  The Method of Virtual Variables and Representations of Lie Superalgebras , 2004 .

[9]  Dennis Stanton,et al.  Invariant theory and tableaux , 1990 .

[10]  Curtis Greene,et al.  An Extension of Schensted's Theorem , 1974 .

[11]  Arun Ram,et al.  Book Review: Young tableaux: With applications to representation theory and geometry , 1999 .

[12]  Charalambos A. Charalambides,et al.  Enumerative combinatorics , 2018, SIGA.

[13]  Donald E. Knuth,et al.  PERMUTATIONS, MATRICES, AND GENERALIZED YOUNG TABLEAUX , 1970 .

[14]  Curtis Greene,et al.  A New Tableau Representation for Supersymmetric Schur Functions , 1994 .

[15]  Marcel P. Schützenberger Quelques remarques sur une Construction de Schensted. , 1963 .

[16]  Moritz Beckmann,et al.  Young tableaux , 2007 .

[17]  C. Schensted Longest Increasing and Decreasing Subsequences , 1961, Canadian Journal of Mathematics.

[18]  J. Allouche Algebraic Combinatorics on Words , 2005 .

[19]  G. Rota,et al.  Introduction to Invariant Theory in Superalgebras , 1990 .

[20]  R. Stanley,et al.  Enumerative Combinatorics: Index , 1999 .