ADflow: An Open-Source Computational Fluid Dynamics Solver for Aerodynamic and Multidisciplinary Optimization

Computational fluid dynamics through the solution of the Navier–Stokes equations with turbulence models has become commonplace. However, simply solving these equations is not sufficient to be able ...

[1]  Georgi Kalitzin,et al.  Unsteady turbomachinery computations using massively parallel platforms , 2006 .

[2]  Joaquim R. R. A. Martins,et al.  Aerodynamic Shape Optimization of Common Research Model Wing–Body–Tail Configuration , 2016 .

[3]  Joaquim R. R. A. Martins,et al.  Coupled component sizing and aerodynamic shape optimization via geometric constraints , 2019, AIAA Aviation 2019 Forum.

[4]  B. V. Leer,et al.  Towards the ultimate conservative difference scheme V. A second-order sequel to Godunov's method , 1979 .

[5]  Joaquim R. R. A. Martins,et al.  Multipoint High-Fidelity Aerostructural Optimization of a Transport Aircraft Configuration , 2014 .

[6]  Joaquim R. R. A. Martins,et al.  An aerodynamic design optimization framework using a discrete adjoint approach with OpenFOAM , 2018 .

[7]  Joaquim R. R. A. Martins,et al.  Aerodynamic shape optimization of wind turbine blades using a Reynolds‐averaged Navier–Stokes model and an adjoint method , 2017 .

[8]  Joaquim R. R. A. Martins,et al.  An efficient parallel overset method for aerodynamic shape optimization , 2017 .

[9]  Joaquim R. R. A. Martins,et al.  A Computational Architecture for Coupling Heterogeneous Numerical Models and Computing Coupled Derivatives , 2018, ACM Trans. Math. Softw..

[10]  Joaquim R. R. A. Martins,et al.  Impact of Morphing Trailing Edges on Mission Performance for the Common Research Model , 2019, Journal of Aircraft.

[11]  Hrvoje Jasak,et al.  A tensorial approach to computational continuum mechanics using object-oriented techniques , 1998 .

[12]  Graeme J. Kennedy,et al.  Scalable Parallel Approach for High-Fidelity Steady-State Aeroelastic Analysis and Adjoint Derivative Computations , 2014 .

[13]  Timothy R. Brooks,et al.  On manufacturing constraints for tow-steered composite design optimization , 2018, Composite Structures.

[14]  V. Vatsa,et al.  Effect of artificial viscosity on three-dimensional flow solutions , 1994 .

[15]  Joaquim R. R. A. Martins,et al.  Component-Based Geometry Manipulation for Aerodynamic Shape Optimization with Overset Meshes , 2018 .

[16]  Joaquim R. R. A. Martins,et al.  Aerodynamic Shape Optimization with Time Spectral Flutter Adjoint , 2019, AIAA Scitech 2019 Forum.

[17]  Joaquim R. R. A. Martins,et al.  Aerostructural optimization of the D8 wing with varying cruise mach numbers , 2017 .

[18]  Y. L. Young,et al.  Experimental investigation of a hydrofoil designed via hydrostructural optimization , 2019, Journal of Fluids and Structures.

[19]  Joaquim R. R. A. Martins,et al.  Multipoint high-fidelity CFD-based aerodynamic shape optimization of a 10 MW wind turbine , 2019 .

[20]  C. Mader,et al.  Modeling Boundary Layer Ingestion Using a Coupled Aeropropulsive Analysis , 2018 .

[21]  Joaquim R. R. A. Martins,et al.  OpenMDAO: an open-source framework for multidisciplinary design, analysis, and optimization , 2019, Structural and Multidisciplinary Optimization.

[22]  Niles A. Pierce,et al.  An Introduction to the Adjoint Approach to Design , 2000 .

[23]  Joaquim R. R. A. Martins,et al.  Multipoint Aerodynamic Shape Optimization for Subsonic and Supersonic Regimes , 2019, Journal of Aircraft.

[24]  William Gropp,et al.  Efficient Management of Parallelism in Object-Oriented Numerical Software Libraries , 1997, SciTools.

[25]  Cody A. Paige,et al.  Automatic Differentiation Adjoint of the Reynolds-Averaged Navier-Stokes Equations with a Turbulence Model , 2013 .

[26]  M. Drela XFOIL: An Analysis and Design System for Low Reynolds Number Airfoils , 1989 .

[27]  A. Jameson,et al.  Numerical solution of the Euler equations by finite volume methods using Runge Kutta time stepping schemes , 1981 .

[28]  Joaquim R. R. A. Martins,et al.  Aeropropulsive Design Optimization of a Boundary Layer Ingestion System , 2019, AIAA Aviation 2019 Forum.

[29]  Joaquim R. R. A. Martins,et al.  High-Fidelity Design-Allocation Optimization of a Commercial Aircraft Maximizing Airline Profit , 2019, Journal of Aircraft.

[30]  John T. Hwang,et al.  Review and Unification of Methods for Computing Derivatives of Multidisciplinary Computational Models , 2013 .

[31]  Jeffrey T. Onufer,et al.  A diagonalized diagonal dominant alternating direction implicit (D3ADI) scheme and subiteration correction , 1998 .

[32]  Joaquim R. R. A. Martins,et al.  Chemical-Equilibrium Analysis with Adjoint Derivatives for Propulsion Cycle Analysis , 2017 .

[33]  Joaquim R. R. A. Martins,et al.  Design of a transonic wing with an adaptive morphing trailing edge via aerostructural optimization , 2018, Aerospace Science and Technology.

[34]  Gaetan K. W. Kenway,et al.  Aerodynamic Shape Optimization of the STARC-ABL Concept for Minimal Inlet Distortion , 2018 .

[35]  Timothy R. Brooks,et al.  Benchmark Aerostructural Models for the Study of Transonic Aircraft Wings , 2018, AIAA Journal.

[36]  Joaquim R. R. A. Martins,et al.  A coupled Newton-Krylov time spectral solver for flutter prediction , 2018 .

[37]  Gaetan Kristian Wiscombe Kenway,et al.  A Scalable, Parallel Approach for Multi-point, High-fidelity Aerostructural Optimization of Aircraft Configurations , 2013 .

[38]  Joaquim R. R. A. Martins,et al.  Aerodynamic Shape Optimization of an Adaptive Morphing Trailing-Edge Wing , 2015 .

[39]  Joaquim R. R. A. Martins,et al.  A CAD-Free Approach to High-Fidelity Aerostructural Optimization , 2010 .

[40]  Joaquim R. R. A. Martins,et al.  A Coupled Newton-Krylov Time Spectral Solver for Wing Flutter and LCO Prediction , 2019, AIAA Aviation 2019 Forum.

[41]  Joaquim R. R. A. Martins,et al.  Aero-propulsive Design Optimization of a Turboelectric Boundary Layer Ingestion Propulsion System , 2018, 2018 Aviation Technology, Integration, and Operations Conference.

[42]  J. Martins,et al.  Buffet-Onset Constraint Formulation for Aerodynamic Shape Optimization , 2017 .

[43]  Raphael T. Haftka,et al.  Structural optimization complexity: what has Moore’s law done for us? , 2004 .

[44]  John C. Vassberg,et al.  Development of a Common Research Model for Applied CFD Validation Studies , 2008 .

[45]  Joaquim R. R. A. Martins,et al.  High-fidelity multipoint hydrostructural optimization of a 3-D hydrofoil , 2017 .

[46]  Joaquim R. R. A. Martins,et al.  Effective adjoint approaches for computational fluid dynamics , 2019, Progress in Aerospace Sciences.

[47]  C. Mader,et al.  Stability-Constrained Aerodynamic Shape Optimization of Flying Wings , 2013 .

[48]  Joaquim R. R. A. Martins,et al.  Robust aerodynamic shape optimization—From a circle to an airfoil , 2019, Aerospace Science and Technology.

[49]  Richard A. Wahls,et al.  Retrospective on the Common Research Model for Computational Fluid Dynamics Validation Studies , 2018, Journal of Aircraft.

[50]  Joaquim R. R. A. Martins,et al.  Multimission Aircraft Fuel-Burn Minimization via Multipoint Aerostructural Optimization , 2015 .

[51]  Joaquim R. R. A. Martins,et al.  On the influence of optimization algorithm and initial design on wing aerodynamic shape optimization , 2018 .

[52]  Y. L. Young,et al.  Viscous fluid–structure interaction response of composite hydrofoils , 2019, Composite Structures.

[53]  F. Menter Two-equation eddy-viscosity turbulence models for engineering applications , 1994 .

[54]  Antony Jameson,et al.  Aerodynamic design via control theory , 1988, J. Sci. Comput..

[55]  Joaquim R. R. A. Martins,et al.  High-Fidelity Hydrodynamic Shape Optimization of a 3-D Hydrofoil , 2015 .

[56]  J. Alonso,et al.  ADjoint: An Approach for the Rapid Development of Discrete Adjoint Solvers , 2006 .

[57]  Joaquim R. R. A. Martins,et al.  A parallel finite-element framework for large-scale gradient-based design optimization of high-performance structures , 2014 .

[58]  Harold Thimbleby,et al.  Computerised Parkinson's Law , 1993 .

[59]  Joaquim R. R. A. Martins,et al.  Coupled aeropropulsive design optimisation of a boundary-layer ingestion propulsor , 2018, The Aeronautical Journal.

[60]  Timothy R. Brooks,et al.  High-fidelity aerostructural optimization of tow-steered composite wings , 2019, Journal of Fluids and Structures.

[61]  Joaquim R. R. A. Martins,et al.  RANS-Based Aerodynamic Shape Optimization of a Strut-Braced Wing with Overset Meshes , 2018, Journal of Aircraft.

[62]  Joaquim R. R. A. Martins,et al.  Aerodynamic Design Optimization Studies of a Blended-Wing-Body Aircraft , 2014 .

[63]  Joaquim R. R. A. Martins,et al.  Aerodynamic Shape Optimization Investigations of the Common Research Model Wing Benchmark , 2015 .

[64]  J. Martins,et al.  Multipoint Aerodynamic Shape Optimization Investigations of the Common Research Model Wing , 2015 .

[65]  Laurent Cambier,et al.  The Onera elsA CFD software: input from research and feedback from industry , 2013 .

[66]  Joaquim R. R. A. Martins,et al.  A Jacobian-free approximate Newton-Krylov startup strategy for RANS simulations , 2019, J. Comput. Phys..

[67]  C. Mader,et al.  Derivatives for Time-Spectral Computational Fluid Dynamics Using an Automatic Differentiation Adjoint , 2012 .

[68]  Joaquim R. R. A. Martins,et al.  A parallel aerostructural optimization framework for aircraft design studies , 2014 .