Modified α-ψ-contractive mappings with applications

The aim of this work is to modify the notions of α-admissible and α-ψ-contractive mappings and establish new fixed point theorems for such mappings in complete metric spaces. Presented theorems provide main results of Karapinar and Samet (Abstr. Appl. Anal. 2012:793486, 2012) and Samet et al. (Nonlinear Anal. 75:2154-2165, 2012) as direct corollaries. Moreover, some examples and applications to integral equations are given here to illustrate the usability of the obtained results.MSC:46N40, 47H10, 54H25, 46T99.

[1]  Bessem Samet,et al.  Fixed point theorems for α–ψ-contractive type mappings , 2012 .

[2]  Common fixed points for JH -operators and occasionally weakly biased pairs under relaxed conditions , 2011 .

[3]  Z. Kadelburg,et al.  Suzuki-type fixed point results in metric type spaces , 2012 .

[4]  Tomonari Suzuki,et al.  A generalized Banach contraction principle that characterizes metric completeness , 2007 .

[5]  Vasile Berinde,et al.  Common fixed points of mappings satisfying implicit contractive conditions , 2012, Fixed Point Theory and Applications.

[6]  Mujahid Abbas,et al.  Common fixed point theorem for four mappings satisfying generalized weak contractive condition , 2010 .

[7]  L. Ciric,et al.  A generalization of Banach’s contraction principle , 1974 .

[8]  Binayak S. Choudhury,et al.  A Generalisation of Contraction Principle in Metric Spaces , 2008 .

[9]  Mujahid Abbas,et al.  Common fixed points of almost generalized contractive mappings in ordered metric spaces , 2011, Appl. Math. Comput..

[10]  Stojan Radenovic,et al.  Meir-Keeler-type conditions in abstract metric spaces , 2011, Appl. Math. Lett..

[11]  A. Khan,et al.  Common Fixed Point and Approximation Results for Noncommuting Maps on Locally Convex Spaces , 2009 .

[12]  E. Karapınar,et al.  Fixed point results for Gm-Meir-Keeler contractive and G-(α,ψ)-Meir-Keeler contractive mappings , 2013, Fixed Point Theory and Applications.

[13]  Dragan Doric,et al.  Common fixed point for generalized (psi, phi)-weak contractions , 2009, Appl. Math. Lett..

[14]  E. Karapınar,et al.  α-admissible mappings and related fixed point theorems , 2013, Journal of Inequalities and Applications.

[15]  Multivalued generalized nonlinear contractive maps and fixed points , 2011 .

[16]  K. L. Singh,et al.  Fixed-point theorems for contractive-type mappings , 1979 .

[17]  Fixed Point Results in Quasimetric Spaces , 2011 .

[18]  R. Agarwal,et al.  Fixed Point Theorems in Ordered Banach Spaces and Applications to Nonlinear Integral Equations , 2012 .

[19]  COMMON FIXED POINT AND APPROXIMATION RESULTS FOR GENERALIZED -CONTRACTIONS , 2009 .

[20]  J. Jachymski,et al.  Equivalent conditions and the Meir-Keeler type theorems , 1995 .

[21]  Zoran Kadelburg,et al.  Comparison Functions and Fixed Point Results in Partial Metric Spaces , 2012 .

[22]  Salvatore Sessa,et al.  Fixed point theorems by altering distances between the points , 1984, Bulletin of the Australian Mathematical Society.

[23]  Nawab Hussain,et al.  Common fixed points for Ćirić type $f$-weak contraction with applications , 2010, Publicationes Mathematicae Debrecen.

[24]  Bessem Samet,et al.  Generalized - Contractive Type Mappings and Related Fixed Point Theorems with Applications , 2012 .