Survival-based CRISPR genetic screens across a panel of permissive cell lines identify common and cell-specific SARS-CoV-2 host factors

[1]  S. Yamanaka,et al.  Dual inhibition of TMPRSS2 and Cathepsin Bprevents SARS-CoV-2 infection in iPS cells , 2021, Molecular Therapy - Nucleic Acids.

[2]  Chunmei Wang,et al.  Chromatin remodeler ARID1A binds IRF3 to selectively induce antiviral interferon production in macrophages , 2021, Cell Death & Disease.

[3]  L. Meijer,et al.  Dual-Specificity, Tyrosine Phosphorylation-Regulated Kinases (DYRKs) and cdc2-Like Kinases (CLKs) in Human Disease, an Overview , 2021, International journal of molecular sciences.

[4]  Peter C. DeWeirdt,et al.  Bidirectional genome-wide CRISPR screens reveal host factors regulating SARS-CoV-2, MERS-CoV and seasonal HCoVs , 2021, Research square.

[5]  A. Ansari,et al.  Critical Involvement of TFIIB in Viral Pathogenesis , 2021, Frontiers in Molecular Biosciences.

[6]  D. Lambrechts,et al.  Genome-wide CRISPR screening identifies TMEM106B as a proviral host factor for SARS-CoV-2 , 2021, Nature Genetics.

[7]  Zixiang Zhu,et al.  JMJD6 negatively regulates cytosolic RNA induced antiviral signaling by recruiting RNF5 to promote activated IRF3 K48 ubiquitination , 2021, PLoS pathogens.

[8]  L. K. Sørensen,et al.  Camostat mesylate inhibits SARS-CoV-2 activation by TMPRSS2-related proteases and its metabolite GBPA exerts antiviral activity , 2021, EBioMedicine.

[9]  D. Qu,et al.  A genome-wide CRISPR screen identifies host factors that regulate SARS-CoV-2 entry , 2021, Nature Communications.

[10]  Nicky Phillips,et al.  The coronavirus is here to stay — here’s what that means , 2021, Nature.

[11]  M. Diamond,et al.  A Crisp(r) New Perspective on SARS-CoV-2 Biology , 2020, Cell.

[12]  N. Krogan,et al.  Genetic Screens Identify Host Factors for SARS-CoV-2 and Common Cold Coronaviruses , 2020, Cell.

[13]  Weijin Huang,et al.  Cathepsin L plays a key role in SARS-CoV-2 infection in humans and humanized mice and is a promising target for new drug development , 2020, Signal Transduction and Targeted Therapy.

[14]  Silva Kasela,et al.  Identification of Required Host Factors for SARS-CoV-2 Infection in Human Cells , 2020, Cell.

[15]  Peter C. DeWeirdt,et al.  Genome-wide CRISPR Screens Reveal Host Factors Critical for SARS-CoV-2 Infection , 2020, Cell.

[16]  Francisco J. Sánchez-Rivera,et al.  Genome-Scale Identification of SARS-CoV-2 and Pan-coronavirus Host Factor Networks , 2020, Cell.

[17]  Francisco J. Sánchez-Rivera,et al.  Functional interrogation of a SARS-CoV-2 host protein interactome identifies unique and shared coronavirus host factors , 2020, Cell Host & Microbe.

[18]  K. Baumann Cellular basis for SARS-CoV-2 infection , 2020, Nature Reviews Molecular Cell Biology.

[19]  G. Milano,et al.  Using Genetics To Dissect SARS-CoV-2 Infection , 2020, Trends in Genetics.

[20]  Thomas W. Linsky,et al.  De novo design of potent and resilient hACE2 decoys to neutralize SARS-CoV-2 , 2020, Science.

[21]  V. Thiel,et al.  Coronavirus biology and replication: implications for SARS-CoV-2 , 2020, Nature Reviews Microbiology.

[22]  F. Martelli,et al.  The epigenetic implication in coronavirus infection and therapy , 2020, Clinical epigenetics.

[23]  Miguel Correa Marrero,et al.  Comparative host-coronavirus protein interaction networks reveal pan-viral disease mechanisms , 2020, Science.

[24]  Francisco J. Sánchez-Rivera,et al.  Genome-scale identification of SARS-CoV-2 and pan-coronavirus host factor networks , 2020, bioRxiv.

[25]  Francisco J. Sánchez-Rivera,et al.  Functional interrogation of a SARS-CoV-2 host protein interactome identifies unique and shared coronavirus host factors , 2020, bioRxiv.

[26]  Y. Orba,et al.  SARS-CoV-2 variants with mutations at the S1/S2 cleavage site are generated in vitro during propagation in TMPRSS2-deficient cells , 2020, bioRxiv.

[27]  S. Munro,et al.  Furin cleavage of SARS-CoV-2 Spike promotes but is not essential for infection and cell-cell fusion , 2020, bioRxiv.

[28]  N. Heaton,et al.  SRSF protein kinases 1 and 2 are essential host factors for human coronaviruses including SARS-CoV-2 , 2020, bioRxiv.

[29]  Sarah K. Hilton,et al.  Deep Mutational Scanning of SARS-CoV-2 Receptor Binding Domain Reveals Constraints on Folding and ACE2 Binding , 2020, Cell.

[30]  L. K. Sørensen,et al.  Camostat mesylate inhibits SARS-CoV-2 activation by TMPRSS2-related proteases and its metabolite GBPA exerts antiviral activity , 2020, bioRxiv.

[31]  Amogelang R. Raphenya,et al.  A Comparison of Whole Genome Sequencing of SARS-CoV-2 Using Amplicon-Based Sequencing, Random Hexamers, and Bait Capture , 2020, Viruses.

[32]  E. Hartenian,et al.  The molecular virology of coronaviruses , 2020, The Journal of Biological Chemistry.

[33]  A. Gingras,et al.  A simple protein-based surrogate neutralization assay for SARS-CoV-2 , 2020, bioRxiv.

[34]  Amogelang R. Raphenya,et al.  Isolation, Sequence, Infectivity, and Replication Kinetics of Severe Acute Respiratory Syndrome Coronavirus 2 , 2020, Emerging infectious diseases.

[35]  Matthew S. Miller,et al.  Experimental and natural evidence of SARS-CoV-2-infection-induced activation of type I interferon responses , 2020, bioRxiv.

[36]  W. Xu,et al.  The role of furin cleavage site in SARS-CoV-2 spike protein-mediated membrane fusion in the presence or absence of trypsin , 2020, Signal Transduction and Targeted Therapy.

[37]  Fang Li,et al.  Cell entry mechanisms of SARS-CoV-2 , 2020, Proceedings of the National Academy of Sciences.

[38]  Anne-Claude Gingras,et al.  Systematic mapping of genetic interactions for de novo fatty acid synthesis identifies C12orf49 as a regulator of lipid metabolism , 2020, Nature metabolism.

[39]  N. Dixit,et al.  Targeting TMPRSS2 and Cathepsin B/L together may be synergistic against SARS-CoV-2 infection , 2020, PLoS Comput. Biol..

[40]  M. Moreli,et al.  The emergence of SARS, MERS and novel SARS-2 coronaviruses in the 21st century , 2020, Archives of Virology.

[41]  O. Tsang,et al.  Comparative tropism, replication kinetics, and cell damage profiling of SARS-CoV-2 and SARS-CoV with implications for clinical manifestations, transmissibility, and laboratory studies of COVID-19: an observational study , 2020, The Lancet Microbe.

[42]  Natacha S. Ogando,et al.  SARS-coronavirus-2 replication in Vero E6 cells: replication kinetics, rapid adaptation and cytopathology , 2020, bioRxiv.

[43]  histone demethylase , 2020, Catalysis from A to Z.

[44]  H. Goossens,et al.  Lower respiratory tract infection in the community: associations between viral aetiology and illness course , 2020, Clinical Microbiology and Infection.

[45]  Fumihiro Kato,et al.  Enhanced isolation of SARS-CoV-2 by TMPRSS2-expressing cells , 2020, Proceedings of the National Academy of Sciences.

[46]  Vineet D. Menachery,et al.  Severe Acute Respiratory Syndrome Coronavirus 2 from Patient with Coronavirus Disease, United States , 2020, Emerging infectious diseases.

[47]  G. Herrler,et al.  SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor , 2020, Cell.

[48]  Shinji Makino,et al.  Isolation and characterization of SARS-CoV-2 from the first US COVID-19 patient , 2020, bioRxiv.

[49]  Arthur S Slutsky,et al.  Angiotensin-converting enzyme 2 (ACE2) as a SARS-CoV-2 receptor: molecular mechanisms and potential therapeutic target , 2020, Intensive Care Medicine.

[50]  M. Letko,et al.  Functional assessment of cell entry and receptor usage for SARS-CoV-2 and other lineage B betacoronaviruses , 2020, Nature Microbiology.

[51]  M. Norouzinia,et al.  Investigating the human protein-host protein interactome of SARS-CoV-2 infection in the small intestine , 2020, Gastroenterology and hepatology from bed to bench.

[52]  Alfonso J. Rodriguez-Morales,et al.  SARS-CoV-2, SARS-CoV, and MERS-COV: A comparative overview , 2020 .

[53]  J. Luban SARS-CoV-2 , 2020 .

[54]  E. Fikrig,et al.  Multiple UBXM Family Members Inhibit Retrovirus and Lentivirus Production and Canonical NFkappaBeta Signaling by Stabilizing IkappaBalpha , 2020 .

[55]  A. Gingras,et al.  Systematic mapping of genetic interactions for de novo fatty acid synthesis identifies C12orf49 as a regulator of lipid metabolism , 2019, Nature Metabolism.

[56]  Gennady Korotkevich,et al.  Fast gene set enrichment analysis , 2019, bioRxiv.

[57]  J. Moffat,et al.  CRISPR screens are feasible in TP53 wild‐type cells , 2019, Molecular systems biology.

[58]  W. Schulz,et al.  The histone demethylase UTX/KDM6A in cancer: Progress and puzzles , 2019, International journal of cancer.

[59]  J. Vilo,et al.  g:Profiler: a web server for functional enrichment analysis and conversions of gene lists (2019 update) , 2019, Nucleic Acids Res..

[60]  A. Brass,et al.  CRISPR genetic screens to discover host-virus interactions. , 2018, Current opinion in virology.

[61]  Q. Morris,et al.  QAPA: a new method for the systematic analysis of alternative polyadenylation from RNA-seq data , 2018, Genome Biology.

[62]  M. Hoffmann,et al.  Priming Time: How Cellular Proteases Arm Coronavirus Spike Proteins , 2018, Activation of Viruses by Host Proteases.

[63]  E. Faghihloo,et al.  Viruses as key modulators of the TGF‐β pathway; a double‐edged sword involved in cancer , 2018, Reviews in medical virology.

[64]  B. Blencowe,et al.  An atlas of alternative splicing profiles and functional associations reveals new regulatory programs and genes that simultaneously express multiple major isoforms , 2017, Genome research.

[65]  D. Durocher,et al.  Evaluation and Design of Genome-Wide CRISPR/SpCas9 Knockout Screens , 2017, G3: Genes, Genomes, Genetics.

[66]  Ji Hoon Park,et al.  Double Plant Homeodomain Fingers 2 (DPF2) Promotes the Immune Escape of Influenza Virus by Suppressing Beta Interferon Production , 2017, Journal of Virology.

[67]  Rob Patro,et al.  Salmon provides fast and bias-aware quantification of transcript expression , 2017, Nature Methods.

[68]  Geet Duggal,et al.  Salmon: fast and bias-aware quantification of transcript expression using dual-phase inference , 2017, Nature Methods.

[69]  Aziz Khan,et al.  Intervene: a tool for intersection and visualization of multiple gene or genomic region sets , 2017, BMC Bioinformatics.

[70]  E. Fikrig,et al.  Multiple UBXN family members inhibit retrovirus and lentivirus production and canonical NFκΒ signaling by stabilizing IκBα , 2017, PLoS pathogens.

[71]  D. Durocher,et al.  Evaluation and Design of Genome-Wide CRISPR / SpCas 9 Knockout Screens , 2017 .

[72]  S. Perlman,et al.  Proteolytic processing of Middle East respiratory syndrome coronavirus spikes expands virus tropism , 2016, Proceedings of the National Academy of Sciences.

[73]  M. Robinson,et al.  Differential analyses for RNA-seq: transcript-level estimates improve gene-level inferences , 2015, F1000Research.

[74]  M. Robinson,et al.  Differential analyses for RNA-seq: transcript-level estimates improve gene-level inferences. , 2015, F1000Research.

[75]  D. Durocher,et al.  High-Resolution CRISPR Screens Reveal Fitness Genes and Genotype-Specific Cancer Liabilities , 2015, Cell.

[76]  J. Moffat,et al.  BAGEL: a computational framework for identifying essential genes from pooled library screens , 2015, bioRxiv.

[77]  Ralf Schmidt,et al.  A comprehensive analysis of 3′ end sequencing data sets reveals novel polyadenylation signals and the repressive role of heterogeneous ribonucleoprotein C on cleavage and polyadenylation , 2015, bioRxiv.

[78]  Matthew E. Ritchie,et al.  limma powers differential expression analyses for RNA-sequencing and microarray studies , 2015, Nucleic acids research.

[79]  B. Clotet,et al.  Characterization of the Influence of Mediator Complex in HIV-1 Transcription* , 2014, The Journal of Biological Chemistry.

[80]  J. Moffat,et al.  Measuring error rates in genomic perturbation screens: gold standards for human functional genomics , 2014, bioRxiv.

[81]  Kavaljit H. Chhabra,et al.  The transcription factor HNF1α induces expression of angiotensin-converting enzyme 2 (ACE2) in pancreatic islets from evolutionarily conserved promoter motifs. , 2013, Biochimica et biophysica acta.

[82]  P. Rosenstiel,et al.  ACE2 links amino acid malnutrition to microbial ecology and intestinal inflammation , 2012, Nature.

[83]  Adam A. Margolin,et al.  The Cancer Cell Line Encyclopedia enables predictive modeling of anticancer drug sensitivity , 2012, Nature.

[84]  Davis J. McCarthy,et al.  Differential expression analysis of multifactor RNA-Seq experiments with respect to biological variation , 2012, Nucleic acids research.

[85]  Helga Thorvaldsdóttir,et al.  Molecular signatures database (MSigDB) 3.0 , 2011, Bioinform..

[86]  A. Gozdzicka-Jozefiak,et al.  Epigenetic mechanisms in virus-induced tumorigenesis , 2011, Clinical Epigenetics.

[87]  Frederick P. Roth,et al.  Next generation software for functional trend analysis , 2009, Bioinform..

[88]  Hyun-A Seong,et al.  Serine-Threonine Kinase Receptor-associated Protein Inhibits Apoptosis Signal-regulating Kinase 1 Function through Direct Interaction* , 2009, The Journal of Biological Chemistry.

[89]  William Stafford Noble,et al.  Transcription , 2003, Chemistry and Biology of Non‐Canonical Nucleic Acids.

[90]  VareillesÉ.,et al.  Evaluation and design , 2007 .

[91]  J. Penninger,et al.  Essential role for collectrin in renal amino acid transport , 2006, Nature.

[92]  J. Druce,et al.  SARS–associated Coronavirus Replication in Cell Lines , 2006, Emerging infectious diseases.

[93]  G. Ryffel,et al.  Identification of target genes of the transcription factor HNF1β and HNF1α in a human embryonic kidney cell line , 2005 .

[94]  Arthur S Slutsky,et al.  Angiotensin-converting enzyme 2 protects from severe acute lung failure , 2005, Nature.

[95]  G. Ryffel,et al.  Identification of target genes of the transcription factor HNF1beta and HNF1alpha in a human embryonic kidney cell line. , 2005, Biochimica et biophysica acta.

[96]  M. Crackower,et al.  Angiotensin-converting enzyme 2 is an essential regulator of heart function , 2002, Nature.

[97]  I. Nishio,et al.  [Angiotensin I converting enzyme]. , 1999, Nihon rinsho. Japanese journal of clinical medicine.

[98]  C. W. Clarke Lower respiratory tract infection. , 1997, The Medical journal of Australia.

[99]  M. A. Hamilton,et al.  Trimmed Spearman-Karber Method for Estimating Median Lethal Concentrations in Toxicity Bioassays , 1977 .

[100]  Harlan D. Mills,et al.  Next Generation Software , 1967 .