Survey of Breast Cancer Detection Using Machine Learning Techniques in Big Data

Cancerisadiseaseinwhichcellsinbodygrowanddividebeyondthecontrol.Breastcanceristhe secondmostcommondiseaseafterlungcancerinwomen.Incredibleadvancesinhealthsciences andbiotechnologyhavepromptedahugeamountofgeneexpressionandclinicaldata.Machine learningtechniquesareimprovingthepriordetectionofbreastcancerfromthisdata.Theresearch workcarriedoutfocusesontheapplicationofmachinelearningmethods,dataanalytictechniques, tools,andframeworksinthefieldofbreastcancerresearchwithrespecttocancersurvivability,cancer recurrence,cancerpredictionanddetection.Someofthewidelyusedmachinelearningtechniques usedfordetectionofbreastcanceraresupportvectormachineandartificialneuralnetwork.Apache Sparkdataprocessingengineisfoundtobecompatiblewithmostofthemachinelearningframeworks. KeywoRDS Big Data Analytics, Breast Cancer, Data Processing Engines, Machine Learning

[1]  Trevor Darrell,et al.  Caffe: Convolutional Architecture for Fast Feature Embedding , 2014, ACM Multimedia.

[2]  S. Pal,et al.  Data Mining Techniques: To Predict and Resolve Breast Cancer Survivability , 2017 .

[3]  Chih-Jen Lin,et al.  LIBLINEAR: A Library for Large Linear Classification , 2008, J. Mach. Learn. Res..

[4]  Hyunjung Shin,et al.  Robust predictive model for evaluating breast cancer survivability , 2013, Eng. Appl. Artif. Intell..

[5]  Kayvan Najarian,et al.  Big Data Analytics in Healthcare , 2015, BioMed research international.

[6]  Michelle Dunn,et al.  The National Institutes of Health's Big Data to Knowledge (BD2K) initiative: capitalizing on biomedical big data , 2014, J. Am. Medical Informatics Assoc..

[7]  V. Marx Biology: The big challenges of big data , 2013, Nature.

[8]  Zhi-Hua Zhou,et al.  Medical diagnosis with C4.5 rule preceded by artificial neural network ensemble , 2003, IEEE Transactions on Information Technology in Biomedicine.

[9]  Natasha A. Khovanova,et al.  Handling limited datasets with neural networks in medical applications: A small-data approach , 2017, Artif. Intell. Medicine.

[10]  Kenli Li,et al.  A Parallel Random Forest Algorithm for Big Data in a Spark Cloud Computing Environment , 2017, IEEE Transactions on Parallel and Distributed Systems.

[11]  Chris Mattmann,et al.  Computing: A vision for data science , 2013, Nature.

[12]  Arvin Agah,et al.  Introduction to Medical Applications of Artificial Intelligence , 2013 .

[13]  Ivo D Dinov,et al.  Volume and Value of Big Healthcare Data. , 2016, Journal of medical statistics and informatics.

[14]  Divesh Srivastava,et al.  Big data integration , 2013, 2013 IEEE 29th International Conference on Data Engineering (ICDE).

[15]  Sanghyun Park,et al.  Integrative Gene Network Construction to Analyze Cancer Recurrence Using Semi-Supervised Learning , 2014, PloS one.

[16]  Taghi M. Khoshgoftaar,et al.  A survey of open source tools for machine learning with big data in the Hadoop ecosystem , 2015, Journal of Big Data.

[17]  J. Listgarten,et al.  Predictive Models for Breast Cancer Susceptibility from Multiple Single Nucleotide Polymorphisms , 2004, Clinical Cancer Research.

[18]  Randy H. Katz,et al.  A view of cloud computing , 2010, CACM.

[19]  Ali Niknejad,et al.  Introduction to Computational Intelligence Techniques and Areas of Their Applications in Medicine , 2013 .

[20]  Bart De Moor,et al.  Predicting the prognosis of breast cancer by integrating clinical and microarray data with Bayesian networks , 2006, ISMB.

[21]  Ya Zhang,et al.  A gene signature for breast cancer prognosis using support vector machine , 2012, 2012 5th International Conference on BioMedical Engineering and Informatics.

[22]  Sanjay Ranka,et al.  Classification and feature selection algorithms for multi-class CGH data , 2008, ISMB.

[23]  Hyunjung Shin,et al.  Research and applications: Breast cancer survivability prediction using labeled, unlabeled, and pseudo-labeled patient data , 2013, J. Am. Medical Informatics Assoc..

[24]  Jake Luo,et al.  Big Data Application in Biomedical Research and Health Care: A Literature Review , 2016, Biomedical informatics insights.

[25]  Sanjay Ghemawat,et al.  MapReduce: Simplified Data Processing on Large Clusters , 2004, OSDI.

[26]  Rae Woong Park,et al.  Development of Novel Breast Cancer Recurrence Prediction Model Using Support Vector Machine , 2012, Journal of breast cancer.

[27]  Luís M. Silva,et al.  High-Content Analysis of Breast Cancer Using Single-Cell Deep Transfer Learning , 2016, Journal of biomolecular screening.

[28]  J. Shavlik,et al.  Breast cancer risk estimation with artificial neural networks revisited , 2010, Cancer.

[29]  D. Hanahan,et al.  Hallmarks of Cancer: The Next Generation , 2011, Cell.

[30]  Ting Chen,et al.  Integrative Data Analysis of Multi-Platform Cancer Data with a Multimodal Deep Learning Approach , 2015, IEEE/ACM Transactions on Computational Biology and Bioinformatics.