Hyperelastic analysis based on a polygonal finite element method

ABSTRACT In this contribution, we present a novel polygonal finite element method applied to hyperelastic analysis. For generating polygonal meshes in a bounded period of time, we use the adaptive Delaunay tessellation (ADT) proposed by Constantinu et al. [1]. ADT is an unstructured hybrid tessellation of a scattered point set that minimally covers the proximal space around each point. In this work, we have extended the ADT to nonconvex domains using concepts from constrained Delaunay triangulation (CDT). The proposed method is thus based on a constrained adaptive Delaunay tessellation (CADT) for the discretization of domains into polygonal regions. We involve the metric coordinate (Malsch) method for obtaining the interpolation over convex and nonconvex domains. For the numerical integration of the Galerkin weak form, we resort to classical Gaussian quadrature based on triangles. Numerical examples of two-dimensional hyperelasticity are considered to demonstrate the advantages of the polygonal finite element method.

[1]  Numerical conformal mapping and mesh generation for polygonal and multiply-connected regions , 2000 .

[2]  Somnath Ghosh,et al.  Elastic-plastic analysis of arbitrary heterogeneous materials with the Voronoi Cell finite element method , 1995 .

[3]  Clark R. Dohrmann,et al.  A method for connecting dissimilar finite element meshes in two dimensions , 2000 .

[4]  N. Sukumar,et al.  Generalized Gaussian quadrature rules on arbitrary polygons , 2010 .

[5]  N. Sukumar,et al.  Conforming polygonal finite elements , 2004 .

[6]  Stéphane Bordas,et al.  Numerical integration over arbitrary polygonal domains based on Schwarz–Christoffel conformal mapping , 2009 .

[7]  Chandrajit L. Bajaj,et al.  Error estimates for generalized barycentric interpolation , 2010, Adv. Comput. Math..

[8]  K. Y. Sze,et al.  Polygonal finite element method for nonlinear constitutive modeling of polycrystalline ferroelectrics , 2005 .

[9]  Paul Steinmann,et al.  The Adaptive Delaunay Tessellation: a neighborhood covering meshing technique , 2008 .

[10]  Leila De Floriani,et al.  An on-line algorithm for constrained Delaunay triangulation , 1992, CVGIP Graph. Model. Image Process..

[11]  Nancy Hitschfeld-Kahler,et al.  Generation of Polyhedral Delaunay Meshes , 2014 .

[12]  A. Russo,et al.  New perspectives on polygonal and polyhedral finite element methods , 2014 .

[13]  Paul Steinmann,et al.  Geometric Properties of the Adaptive Delaunay Tessellation , 2008, MMCS.

[14]  Junping Wang,et al.  An efficient numerical scheme for the biharmonic equation by weak Galerkin finite element methods on polygonal or polyhedral meshes , 2013, Comput. Math. Appl..

[15]  N. Sukumar,et al.  Quadratic maximum-entropy serendipity shape functions for arbitrary planar polygons , 2013 .

[16]  Amir R. Khoei,et al.  A polygonal finite element method for modeling arbitrary interfaces in large deformation problems , 2012 .

[17]  Peter Wriggers,et al.  Polygonal finite element methods for contact-impact problems on non-conformal meshes , 2014 .

[18]  Sergej Rjasanow,et al.  Universität Des Saarlandes Fachrichtung 6.1 – Mathematik Higher Order Bem-based Fem on Polygonal Meshes Higher Order Bem-based Fem on Polygonal Meshes Higher Order Bem-based Fem on Polygonal Meshes , 2022 .

[19]  S. Natarajan,et al.  Convergence and accuracy of displacement based finite element formulations over arbitrary polygons: Laplace interpolants, strain smoothing and scaled boundary polygon formulation , 2014 .

[20]  S. Wandzurat,et al.  Symmetric quadrature rules on a triangle , 2003 .

[21]  Borut Zalik,et al.  An incremental construction algorithm for Delaunay triangulation using the nearest-point paradigm , 2003, Int. J. Geogr. Inf. Sci..

[22]  John Lin,et al.  Smooth Two-Dimensional Interpolations: A Recipe for All Polygons , 2005, J. Graph. Tools.

[23]  N. Sukumar,et al.  Archives of Computational Methods in Engineering Recent Advances in the Construction of Polygonal Finite Element Interpolants , 2022 .

[24]  E. Oñate,et al.  The extended Delaunay tessellation , 2003 .

[25]  Zydrunas Gimbutas,et al.  A numerical algorithm for the construction of efficient quadrature rules in two and higher dimensions , 2010, Comput. Math. Appl..

[26]  Glaucio H. Paulino,et al.  Polygonal finite elements for topology optimization: A unifying paradigm , 2010 .

[27]  K. Bathe,et al.  The method of finite spheres , 2000 .

[28]  Glaucio H. Paulino,et al.  On the Virtual Element Method for three-dimensional linear elasticity problems on arbitrary polyhedral meshes , 2014 .

[29]  Jonathan Richard Shewchuk,et al.  What is a Good Linear Element? Interpolation, Conditioning, and Quality Measures , 2002, IMR.

[30]  Michael S. Floater,et al.  Mean value coordinates , 2003, Comput. Aided Geom. Des..

[31]  Wei Zeng,et al.  Constrained Delaunay Triangulation Using Delaunay Visibility , 2006, ISVC.

[32]  Paul Steinmann,et al.  Finite element formulations for 3D convex polyhedra in nonlinear continuum mechanics , 2017 .

[33]  K. Y. Dai,et al.  An n-sided polygonal smoothed finite element method (nSFEM) for solid mechanics , 2007 .

[34]  James N. Lyness,et al.  Moderate degree symmetric quadrature rules for the triangle j inst maths , 1975 .

[35]  A two-dimensional base force element method using concave polygonal mesh , 2014 .

[36]  Michael S. Floater,et al.  Gradient Bounds for Wachspress Coordinates on Polytopes , 2013, SIAM J. Numer. Anal..

[37]  Sundararajan Natarajan,et al.  Integrating strong and weak discontinuities without integration subcells and example applications in an XFEM/GFEM framework , 2010, 1107.4732.

[38]  Francisco-Javier Sayas,et al.  The Validity of Johnson-Nédélec's BEM-FEM Coupling on Polygonal Interfaces , 2009, SIAM Rev..

[39]  Jonathan Richard Shewchuk,et al.  General-Dimensional Constrained Delaunay and Constrained Regular Triangulations, I: Combinatorial Properties , 2008, Discret. Comput. Geom..

[40]  H. W. Zhang,et al.  Analysis of Cosserat materials with Voronoi cell finite element method and parametric variational principle , 2008 .

[41]  Gianmarco Manzini,et al.  Hourglass stabilization and the virtual element method , 2015 .

[42]  Yuri A. Kuznetsov Mixed finite element method for diffusion equations on polygonal meshes with mixed cells , 2006, J. Num. Math..

[43]  K. Bathe,et al.  The method of finite spheres with improved numerical integration , 2001 .

[44]  J. Prévost,et al.  Modeling quasi-static crack growth with the extended finite element method Part I: Computer implementation , 2003 .

[45]  Glaucio H. Paulino,et al.  Polygonal finite elements for incompressible fluid flow , 2014 .

[46]  P. M. Gullett,et al.  On a finite element method with variable element topology , 2000 .

[47]  Elisabeth Anna Malsch,et al.  Interpolations for temperature distributions: a method for all non-concave polygons , 2004 .

[48]  Mark A. Taylor,et al.  Asymmetric cubature formulas for polynomial integration in the triangle and square , 2008 .

[49]  C. Duarte,et al.  p-Adaptive Ck generalized finite element method for arbitrary polygonal clouds , 2007 .

[50]  Elisabeth Anna Malsch,et al.  Shape functions for polygonal domains with interior nodes , 2004 .

[51]  P. Silvester,et al.  Symmetric Quadrature Formulae for Simplexes , 1970 .

[52]  E. Wachspress,et al.  A Rational Finite Element Basis , 1975 .

[53]  Glaucio H. Paulino,et al.  Polygonal finite elements for finite elasticity , 2015 .

[54]  Catterina Dagnino,et al.  Numerical integration over polygons using an eight-node quadrilateral spline finite element , 2009, J. Comput. Appl. Math..

[55]  H. Nguyen-Xuan,et al.  Free and forced vibration analysis using the n-sided polygonal cell-based smoothed finite element method (nCS-FEM) , 2013 .

[56]  Vladimir Rokhlin,et al.  Generalized Gaussian quadrature rules for systems of arbitrary functions , 1996 .

[57]  Xuhai Tang,et al.  A novel virtual node method for polygonal elements , 2009 .

[58]  Kai Hormann,et al.  Maximum Entropy Coordinates for Arbitrary Polytopes , 2008, Comput. Graph. Forum.

[59]  Mathieu Desbrun,et al.  Barycentric coordinates for convex sets , 2007, Adv. Comput. Math..