Hyperelastic analysis based on a polygonal finite element method
暂无分享,去创建一个
[1] Numerical conformal mapping and mesh generation for polygonal and multiply-connected regions , 2000 .
[2] Somnath Ghosh,et al. Elastic-plastic analysis of arbitrary heterogeneous materials with the Voronoi Cell finite element method , 1995 .
[3] Clark R. Dohrmann,et al. A method for connecting dissimilar finite element meshes in two dimensions , 2000 .
[4] N. Sukumar,et al. Generalized Gaussian quadrature rules on arbitrary polygons , 2010 .
[5] N. Sukumar,et al. Conforming polygonal finite elements , 2004 .
[6] Stéphane Bordas,et al. Numerical integration over arbitrary polygonal domains based on Schwarz–Christoffel conformal mapping , 2009 .
[7] Chandrajit L. Bajaj,et al. Error estimates for generalized barycentric interpolation , 2010, Adv. Comput. Math..
[8] K. Y. Sze,et al. Polygonal finite element method for nonlinear constitutive modeling of polycrystalline ferroelectrics , 2005 .
[9] Paul Steinmann,et al. The Adaptive Delaunay Tessellation: a neighborhood covering meshing technique , 2008 .
[10] Leila De Floriani,et al. An on-line algorithm for constrained Delaunay triangulation , 1992, CVGIP Graph. Model. Image Process..
[11] Nancy Hitschfeld-Kahler,et al. Generation of Polyhedral Delaunay Meshes , 2014 .
[12] A. Russo,et al. New perspectives on polygonal and polyhedral finite element methods , 2014 .
[13] Paul Steinmann,et al. Geometric Properties of the Adaptive Delaunay Tessellation , 2008, MMCS.
[14] Junping Wang,et al. An efficient numerical scheme for the biharmonic equation by weak Galerkin finite element methods on polygonal or polyhedral meshes , 2013, Comput. Math. Appl..
[15] N. Sukumar,et al. Quadratic maximum-entropy serendipity shape functions for arbitrary planar polygons , 2013 .
[16] Amir R. Khoei,et al. A polygonal finite element method for modeling arbitrary interfaces in large deformation problems , 2012 .
[17] Peter Wriggers,et al. Polygonal finite element methods for contact-impact problems on non-conformal meshes , 2014 .
[18] Sergej Rjasanow,et al. Universität Des Saarlandes Fachrichtung 6.1 – Mathematik Higher Order Bem-based Fem on Polygonal Meshes Higher Order Bem-based Fem on Polygonal Meshes Higher Order Bem-based Fem on Polygonal Meshes , 2022 .
[19] S. Natarajan,et al. Convergence and accuracy of displacement based finite element formulations over arbitrary polygons: Laplace interpolants, strain smoothing and scaled boundary polygon formulation , 2014 .
[20] S. Wandzurat,et al. Symmetric quadrature rules on a triangle , 2003 .
[21] Borut Zalik,et al. An incremental construction algorithm for Delaunay triangulation using the nearest-point paradigm , 2003, Int. J. Geogr. Inf. Sci..
[22] John Lin,et al. Smooth Two-Dimensional Interpolations: A Recipe for All Polygons , 2005, J. Graph. Tools.
[23] N. Sukumar,et al. Archives of Computational Methods in Engineering Recent Advances in the Construction of Polygonal Finite Element Interpolants , 2022 .
[24] E. Oñate,et al. The extended Delaunay tessellation , 2003 .
[25] Zydrunas Gimbutas,et al. A numerical algorithm for the construction of efficient quadrature rules in two and higher dimensions , 2010, Comput. Math. Appl..
[26] Glaucio H. Paulino,et al. Polygonal finite elements for topology optimization: A unifying paradigm , 2010 .
[27] K. Bathe,et al. The method of finite spheres , 2000 .
[28] Glaucio H. Paulino,et al. On the Virtual Element Method for three-dimensional linear elasticity problems on arbitrary polyhedral meshes , 2014 .
[29] Jonathan Richard Shewchuk,et al. What is a Good Linear Element? Interpolation, Conditioning, and Quality Measures , 2002, IMR.
[30] Michael S. Floater,et al. Mean value coordinates , 2003, Comput. Aided Geom. Des..
[31] Wei Zeng,et al. Constrained Delaunay Triangulation Using Delaunay Visibility , 2006, ISVC.
[32] Paul Steinmann,et al. Finite element formulations for 3D convex polyhedra in nonlinear continuum mechanics , 2017 .
[33] K. Y. Dai,et al. An n-sided polygonal smoothed finite element method (nSFEM) for solid mechanics , 2007 .
[34] James N. Lyness,et al. Moderate degree symmetric quadrature rules for the triangle j inst maths , 1975 .
[35] A two-dimensional base force element method using concave polygonal mesh , 2014 .
[36] Michael S. Floater,et al. Gradient Bounds for Wachspress Coordinates on Polytopes , 2013, SIAM J. Numer. Anal..
[37] Sundararajan Natarajan,et al. Integrating strong and weak discontinuities without integration subcells and example applications in an XFEM/GFEM framework , 2010, 1107.4732.
[38] Francisco-Javier Sayas,et al. The Validity of Johnson-Nédélec's BEM-FEM Coupling on Polygonal Interfaces , 2009, SIAM Rev..
[39] Jonathan Richard Shewchuk,et al. General-Dimensional Constrained Delaunay and Constrained Regular Triangulations, I: Combinatorial Properties , 2008, Discret. Comput. Geom..
[40] H. W. Zhang,et al. Analysis of Cosserat materials with Voronoi cell finite element method and parametric variational principle , 2008 .
[41] Gianmarco Manzini,et al. Hourglass stabilization and the virtual element method , 2015 .
[42] Yuri A. Kuznetsov. Mixed finite element method for diffusion equations on polygonal meshes with mixed cells , 2006, J. Num. Math..
[43] K. Bathe,et al. The method of finite spheres with improved numerical integration , 2001 .
[44] J. Prévost,et al. Modeling quasi-static crack growth with the extended finite element method Part I: Computer implementation , 2003 .
[45] Glaucio H. Paulino,et al. Polygonal finite elements for incompressible fluid flow , 2014 .
[46] P. M. Gullett,et al. On a finite element method with variable element topology , 2000 .
[47] Elisabeth Anna Malsch,et al. Interpolations for temperature distributions: a method for all non-concave polygons , 2004 .
[48] Mark A. Taylor,et al. Asymmetric cubature formulas for polynomial integration in the triangle and square , 2008 .
[49] C. Duarte,et al. p-Adaptive Ck generalized finite element method for arbitrary polygonal clouds , 2007 .
[50] Elisabeth Anna Malsch,et al. Shape functions for polygonal domains with interior nodes , 2004 .
[51] P. Silvester,et al. Symmetric Quadrature Formulae for Simplexes , 1970 .
[52] E. Wachspress,et al. A Rational Finite Element Basis , 1975 .
[53] Glaucio H. Paulino,et al. Polygonal finite elements for finite elasticity , 2015 .
[54] Catterina Dagnino,et al. Numerical integration over polygons using an eight-node quadrilateral spline finite element , 2009, J. Comput. Appl. Math..
[55] H. Nguyen-Xuan,et al. Free and forced vibration analysis using the n-sided polygonal cell-based smoothed finite element method (nCS-FEM) , 2013 .
[56] Vladimir Rokhlin,et al. Generalized Gaussian quadrature rules for systems of arbitrary functions , 1996 .
[57] Xuhai Tang,et al. A novel virtual node method for polygonal elements , 2009 .
[58] Kai Hormann,et al. Maximum Entropy Coordinates for Arbitrary Polytopes , 2008, Comput. Graph. Forum.
[59] Mathieu Desbrun,et al. Barycentric coordinates for convex sets , 2007, Adv. Comput. Math..