Transcriptome analysis of Δmig1Δmig2 mutant reveals their roles in methanol catabolism, peroxisome biogenesis and autophagy in methylotrophic yeast Pichia pastoris

[1]  Xiaolong Wang,et al.  Methanol-Independent Protein Expression by AOX1 Promoter with trans-Acting Elements Engineering and Glucose-Glycerol-Shift Induction in Pichia pastoris , 2017, Scientific Reports.

[2]  A. Sibirny Yeast peroxisomes: structure, functions and biotechnological opportunities. , 2016, FEMS yeast research.

[3]  Xiaolong Wang,et al.  Mit1 Transcription Factor Mediates Methanol Signaling and Regulates the Alcohol Oxidase 1 (AOX1) Promoter in Pichia pastoris* , 2016, The Journal of Biological Chemistry.

[4]  P. Rangarajan,et al.  Trm1p, a Zn(II)₂Cys₆-type transcription factor, is essential for the transcriptional activation of genes of methanol utilization pathway, in Pichia pastoris. , 2014, Biochemical and biophysical research communications.

[5]  T. Vogl,et al.  Regulation of Pichia pastoris promoters and its consequences for protein production. , 2013, New biotechnology.

[6]  Michael Sauer,et al.  Pichia pastoris: protein production host and model organism for biomedical research. , 2013, Future microbiology.

[7]  Y. Sakai,et al.  Yeast Methylotrophy: Metabolism, Gene Regulation and Peroxisome Homeostasis , 2011, International journal of microbiology.

[8]  Fatih Ozsolak,et al.  RNA sequencing: advances, challenges and opportunities , 2011, Nature Reviews Genetics.

[9]  Y. Sakai,et al.  Trm2p-dependent derepression is essential for methanol-specific gene activation in the methylotrophic yeast Candida boidinii. , 2010, FEMS yeast research.

[10]  J. Cregg,et al.  Catabolite Repression of Aox in Pichia pastoris Is Dependent on Hexose Transporter PpHxt1 and Pexophagy , 2010, Applied and Environmental Microbiology.

[11]  Richard Durbin,et al.  Fast and accurate long-read alignment with Burrows–Wheeler transform , 2010, Bioinform..

[12]  J. Bähler,et al.  Cellular and Molecular Life Sciences REVIEW RNA-seq: from technology to biology , 2022 .

[13]  B. Wilhelm,et al.  RNA-Seq-quantitative measurement of expression through massively parallel RNA-sequencing. , 2009, Methods.

[14]  Yves Van de Peer,et al.  Genome sequence of the recombinant protein production host Pichia pastoris , 2009, Nature Biotechnology.

[15]  Richard Durbin,et al.  Sequence analysis Fast and accurate short read alignment with Burrows – Wheeler transform , 2009 .

[16]  B. Williams,et al.  Mapping and quantifying mammalian transcriptomes by RNA-Seq , 2008, Nature Methods.

[17]  Thomas D. Schmittgen,et al.  Analyzing real-time PCR data by the comparative CT method , 2008, Nature Protocols.

[18]  S. Subramani,et al.  PpAtg30 tags peroxisomes for turnover by selective autophagy. , 2008, Developmental cell.

[19]  J. Thevelein,et al.  Identification of Hexose Transporter-Like Sensor HXS1 and Functional Hexose Transporter HXT1 in the Methylotrophic Yeast Hansenula polymorpha , 2008, Eukaryotic Cell.

[20]  M. Veenhuis,et al.  The role of Hansenula polymorpha MIG1 homologues in catabolite repression and pexophagy. , 2007, FEMS yeast research.

[21]  Pingzuo Li,et al.  Expression of Recombinant Proteins in Pichia Pastoris , 2007, Applied biochemistry and biotechnology.

[22]  Anton Glieder,et al.  Regulation of methanol utilisation pathway genes in yeasts , 2006 .

[23]  I. J. van der Klei,et al.  The significance of peroxisomes in methanol metabolism in methylotrophic yeast. , 2006, Biochimica et biophysica acta.

[24]  Thomas Lengauer,et al.  Improved scoring of functional groups from gene expression data by decorrelating GO graph structure , 2006, Bioinform..

[25]  J. Cregg,et al.  Mxr1p, a Key Regulator of the Methanol Utilization Pathway and Peroxisomal Genes in Pichia pastoris , 2006, Molecular and Cellular Biology.

[26]  I. J. van der Klei,et al.  Alcohol oxidase: a complex peroxisomal, oligomeric flavoprotein. , 2005, FEMS yeast research.

[27]  Tina Chang,et al.  PpATG9 encodes a novel membrane protein that traffics to vacuolar membranes, which sequester peroxisomes during pexophagy in Pichia pastoris. , 2005, Molecular biology of the cell.

[28]  Arjen M. Krikken,et al.  The Hansenula polymorpha ATG25 Gene Encodes a Novel Coiled-Coil Protein that is Required for Macropexophagy , 2005, Autophagy.

[29]  Arjen M. Krikken,et al.  Hansenula polymorpha Tup1p is important for peroxisome degradation. , 2004, FEMS yeast research.

[30]  Hans-Joachim Schüller,et al.  Transcriptional control of nonfermentative metabolism in the yeast Saccharomyces cerevisiae , 2003, Current Genetics.

[31]  F. Speleman,et al.  Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes , 2002, Genome Biology.

[32]  A. Jimenez,et al.  Molecular and functional analysis of a MIG1 homologue from the yeast Schwanniomyces occidentalis , 2002, Yeast.

[33]  K. Walther,et al.  Adr1 and Cat8 synergistically activate the glucose-regulated alcohol dehydrogenase gene ADH2 of the yeast Saccharomyces cerevisiae. , 2001, Microbiology.

[34]  M. Carlson,et al.  Glucose repression in yeast. , 1999, Current opinion in microbiology.

[35]  J. Gancedo Yeast Carbon Catabolite Repression , 1998, Microbiology and Molecular Biology Reviews.

[36]  H. Ronne,et al.  Functional domains in the Mig1 repressor , 1996, Molecular and cellular biology.

[37]  K. Entian,et al.  CAT8, a new zinc cluster-encoding gene necessary for derepression of gluconeogenic enzymes in the yeast Saccharomyces cerevisiae , 1995, Molecular and cellular biology.

[38]  B. Felenbok,et al.  The Aspergillus nidulans CREA protein mediates glucose repression of the ethanol regulon at various levels through competition with the ALCR‐specific transactivator. , 1994, The EMBO journal.

[39]  J. Kelly,et al.  Specific binding sites in the alcR and alcA promoters of the ethanol regulon for the CREA repressor mediating carbon cataboiite repression in Aspergillus nidulans , 1993, Molecular microbiology.

[40]  H. Ronne,et al.  Control of yeast GAL genes by MIG1 repressor: a transcriptional cascade in the glucose response. , 1991, The EMBO journal.

[41]  H. Ronne,et al.  Yeast MIG1 repressor is related to the mammalian early growth response and Wilms' tumour finger proteins. , 1990, The EMBO journal.

[42]  M. Veenhuis,et al.  Alcohol oxidase expressed under nonmethylotrophic conditions is imported, assembled, and enzymatically active in peroxisomes of Hansenula polymorpha , 1988, The Journal of cell biology.

[43]  M. Carlson,et al.  Molecular analysis of SSN6, a gene functionally related to the SNF1 protein kinase of Saccharomyces cerevisiae , 1987, Molecular and cellular biology.

[44]  T. Egli,et al.  Methanol metabolism in yeasts: Regulation of the synthesis of catabolic enzymes , 1980, Archives of Microbiology.

[45]  Xuegong Zhang,et al.  DEGseq: an R package for identifying differentially expressed genes from RNA-seq data , 2010, Bioinform..

[46]  P. Bos,et al.  Methanol assimilation by yeasts , 2004, Archiv für Mikrobiologie.

[47]  M. Inan,et al.  Non-repressing carbon sources for alcohol oxidase (AOX1) promoter of Pichia pastoris. , 2001, Journal of bioscience and bioengineering.

[48]  J. Cregg,et al.  Heterologous protein expression in the methylotrophic yeast Pichia pastoris. , 2000, FEMS microbiology reviews.

[49]  Y. Benjamini,et al.  Controlling the false discovery rate: a practical and powerful approach to multiple testing , 1995 .