De novo KCNB1 mutations in epileptic encephalopathy

Numerous studies have demonstrated increased load of de novo copy number variants or single nucleotide variants in individuals with neurodevelopmental disorders, including epileptic encephalopathies, intellectual disability, and autism.

[1]  Oriane Trouillard,et al.  De novo mutations in HCN1 cause early infantile epileptic encephalopathy , 2014, Nature Genetics.

[2]  B. Bean,et al.  Kv2 Channel Regulation of Action Potential Repolarization and Firing Patterns in Superior Cervical Ganglion Neurons and Hippocampal CA1 Pyramidal Neurons , 2014, The Journal of Neuroscience.

[3]  Jon T. Sack,et al.  Deletion of the Kv2.1 delayed rectifier potassium channel leads to neuronal and behavioral hyperexcitability , 2014, Genes, brain, and behavior.

[4]  N. Schork,et al.  Gain‐of‐function ADCY5 mutations in familial dyskinesia with facial myokymia , 2014, Annals of neurology.

[5]  I. Scheffer,et al.  Dominant‐negative effects of KCNQ2 mutations are associated with epileptic encephalopathy , 2014, Annals of neurology.

[6]  T. Loddenkemper,et al.  Diagnostic delays in children with early onset epilepsy: Impact, reasons, and opportunities to improve care , 2014, Epilepsia.

[7]  Dongxu Guan,et al.  Kv2 channels regulate firing rate in pyramidal neurons from rat sensorimotor cortex , 2013, The Journal of physiology.

[8]  Mauricio O. Carneiro,et al.  From FastQ Data to High‐Confidence Variant Calls: The Genome Analysis Toolkit Best Practices Pipeline , 2013, Current protocols in bioinformatics.

[9]  M. Meisler,et al.  Sodium channel SCN8A (Nav1.6): properties and de novo mutations in epileptic encephalopathy and intellectual disability , 2013, Front. Genet..

[10]  A. Carpenter,et al.  The epilepsy phenome/genome project. , 2013 .

[11]  I. Scheffer,et al.  The Epilepsy Phenome/Genome Project , 2013, Clinical trials.

[12]  K. Veeramah,et al.  Exome sequencing reveals new causal mutations in children with epileptic encephalopathies , 2013, Epilepsia.

[13]  J. Shendure,et al.  Targeted resequencing in epileptic encephalopathies identifies de novo mutations in CHD2 and SYNGAP1 , 2013, Nature Genetics.

[14]  I. Scheffer,et al.  SCN1A testing for epilepsy: Application in clinical practice , 2013, Epilepsia.

[15]  I. Scheffer,et al.  The clinical utility of an SCN1A genetic diagnosis in infantile‐onset epilepsy , 2013, Developmental medicine and child neurology.

[16]  De novo mutations in epileptic encephalopathies , 2013 .

[17]  Bradley P. Coe,et al.  Multiplex Targeted Sequencing Identifies Recurrently Mutated Genes in Autism Spectrum Disorders , 2012, Science.

[18]  D. Horn,et al.  Range of genetic mutations associated with severe non-syndromic sporadic intellectual disability: an exome sequencing study , 2012, The Lancet.

[19]  Kenny Q. Ye,et al.  An integrated map of genetic variation from 1,092 human genomes , 2012, Nature.

[20]  Michael F. Walker,et al.  De novo mutations revealed by whole-exome sequencing are strongly associated with autism , 2012, Nature.

[21]  Bradley P. Coe,et al.  Sporadic autism exomes reveal a highly interconnected protein network of de novo mutations , 2012, Nature.

[22]  D. Higgins,et al.  Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega , 2011, Molecular systems biology.

[23]  M. Gerstein,et al.  CNVnator: an approach to discover, genotype, and characterize typical and atypical CNVs from family and population genome sequencing. , 2011, Genome research.

[24]  W. Armstrong,et al.  Postnatal development of A-type and Kv1- and Kv2-mediated potassium channel currents in neocortical pyramidal neurons. , 2011, Journal of neurophysiology.

[25]  M. DePristo,et al.  A framework for variation discovery and genotyping using next-generation DNA sequencing data , 2011, Nature Genetics.

[26]  A. George,et al.  Voltage-gated potassium channel KCNV2 (Kv8.2) contributes to epilepsy susceptibility , 2011, Proceedings of the National Academy of Sciences.

[27]  S. Mane,et al.  K+ Channel Mutations in Adrenal Aldosterone-Producing Adenomas and Hereditary Hypertension , 2011, Science.

[28]  Sharon R Grossman,et al.  Integrating common and rare genetic variation in diverse human populations , 2010, Nature.

[29]  M. DePristo,et al.  The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. , 2010, Genome research.

[30]  J. H. Cross,et al.  Revised terminology and concepts for organization of seizures and epilepsies: Report of the ILAE Commission on Classification and Terminology, 2005–2009 , 2010, Epilepsia.

[31]  Richard Durbin,et al.  Sequence analysis Fast and accurate short read alignment with Burrows – Wheeler transform , 2009 .

[32]  E. Campbell,et al.  Atomic structure of a voltage-dependent K+ channel in a lipid membrane-like environment , 2007, Nature.

[33]  D. Surmeier,et al.  Kv2 subunits underlie slowly inactivating potassium current in rat neocortical pyramidal neurons , 2007, The Journal of physiology.

[34]  M. Boyett,et al.  Molecular Basis of Ion Selectivity, Block, and Rectification of the Inward Rectifier Kir3.1/Kir3.4 K+ Channel , 2003, Journal of Biological Chemistry.

[35]  S. Korn,et al.  Influence of Pore Residues on Permeation Properties in the Kv2.1 Potassium Channel. Evidence for a Selective Functional Interaction of K+ with the Outer Vestibule , 2003, The Journal of general physiology.

[36]  M. Adams,et al.  Recent Segmental Duplications in the Human Genome , 2002, Science.

[37]  C. McBain,et al.  Frequency‐dependent regulation of rat hippocampal somato‐dendritic excitability by the K+ channel subunit Kv2.1 , 2000, The Journal of physiology.

[38]  David E. Clapham,et al.  Nonselective and Gβγ-Insensitive weaver K+ Channels , 1996, Science.

[39]  J. Ruppersberg Ion Channels in Excitable Membranes , 1996 .

[40]  D. Clapham,et al.  Nonselective and G betagamma-insensitive weaver K+ channels. , 1996, Science.

[41]  R. MacKinnon,et al.  Mutations in the K+ channel signature sequence. , 1994, Biophysical journal.