Optimal lower bounds for first eigenvalues of Riemann surfaces for large genus
暂无分享,去创建一个
[1] Yunhui Wu,et al. Large genus asymptotics for lengths of separating closed geodesics on random surfaces , 2020, Journal of Topology.
[2] Albert Y. Zomaya,et al. Partial Differential Equations , 2007, Explorations in Numerical Analysis.
[3] Yunhui Wu,et al. Small eigenvalues of closed Riemann surfaces for large genus , 2018, 1809.07449.
[4] M. Stern,et al. Geometry of the Smallest 1-form Laplacian Eigenvalue on Hyperbolic Manifolds , 2016, Geometric and Functional Analysis.
[5] W. Ballmann,et al. On the analytic systole of Riemannian surfaces of finite type , 2016, 1611.00925.
[6] W. Ballmann,et al. Small eigenvalues of closed surfaces , 2016 .
[7] S. Zelditch. EIGENFUNCTIONS AND NODAL SETS , 2012, 1205.2812.
[8] Michael Taylor,et al. Partial Differential Equations I: Basic Theory , 1996 .
[9] P. Buser. Riemannsche Flächen mit Eigenwerten in (0,1/4) , 1977 .
[10] Mondal. Systole and 2 g 2 of closed hyperbolic surfaces of genus g , 2014 .
[11] P. Buser,et al. Geometry and Spectra of Compact Riemann Surfaces , 1992 .
[12] D. Sullivan,et al. Estimating small eigenvalues of Riemann surfaces , 1987 .
[13] L. Bers. An Inequality for Riemann Surfaces , 1985 .
[14] I. Chavel. Eigenvalues in Riemannian geometry , 1984 .
[15] R. Schoen,et al. GEOMETRIC BOUNDS ON THE LOW EIGENVALUES OF A COMPACT SURFACE , 1980 .
[16] J. Cheeger. A lower bound for the smallest eigenvalue of the Laplacian , 1969 .