Thermodynamic properties of duplex DNA in microchannel laminar flow.

[1]  Douglas E. Smith,et al.  Response of flexible polymers to a sudden elongational flow , 1998, Science.

[2]  R. Larson,et al.  Brownian dynamics simulations of a DNA molecule in an extensional flow field , 1999 .

[3]  B. Zimm,et al.  Fracture of polymer chains in extensional flow : experiments with DNA, and a molecular-dynamics simulation , 1990 .

[4]  Qun Zhong,et al.  Single DNA molecule stretching in sudden mixed shear and elongational microflows. , 2006, Lab on a chip.

[5]  T Kitamori,et al.  Acceleration of an enzymatic reaction in a microchip. , 2001, Analytical sciences : the international journal of the Japan Society for Analytical Chemistry.

[6]  Naoki Sasaki,et al.  Deformation of λ‐phage DNA molecules in an elongational flow field , 1996 .

[7]  K. Breslauer,et al.  Calculating thermodynamic data for transitions of any molecularity from equilibrium melting curves , 1987, Biopolymers.

[8]  Hideaki Maeda,et al.  Rapid enzymatic transglycosylation and oligosaccharide synthesis in a microchip reactor. , 2002, Lab on a chip.

[9]  N. Sugimoto,et al.  Transition characteristics and thermodynamic analysis of DNA duplex formation: a quantitative consideration for the extent of duplex association. , 2000, Nucleic acids research.

[10]  Philip LeDuc,et al.  Dynamics of individual flexible polymers in a shear flow , 1999, Nature.

[11]  Yoshiko Yamaguchi,et al.  3-D Simulation and Visualization of Laminar Flow in a Microchannel with Hair-Pin Curves , 2004 .

[12]  B. Zimm Dynamics of Polymer Molecules in Dilute Solution: Viscoelasticity, Flow Birefringence and Dielectric Loss , 1956 .

[13]  M. Miyazaki,et al.  Direct observation of long-strand DNA conformational changing in microchannel flow and microfluidic hybridization assay. , 2004, Analytical biochemistry.

[14]  Hiroyuki Nakamura,et al.  Improved Yield of Enzyme Reaction in Microchannel Reactor , 2001 .

[15]  Ronald G. Larson,et al.  Brownian dynamics simulations of single DNA molecules in shear flow , 2000 .

[16]  D. Turner,et al.  Base-stacking and base-pairing contributions to helix stability: thermodynamics of double-helix formation with CCGG, CCGGp, CCGGAp, ACCGGp, CCGGUp, and ACCGGUp. , 1983, Biochemistry.

[17]  M. Record,et al.  Enthalpy and heat capacity changes for formation of an oligomeric DNA duplex: interpretation in terms of coupled processes of formation and association of single-stranded helices. , 1999, Biochemistry.

[18]  M. Miyazaki,et al.  Direct Observation of Long-strand DNA Stretching in Microchannel Flow , 2004 .

[19]  Petr Munk,et al.  Introduction to macromolecular science , 1989 .

[20]  Hiroyuki Nakamura,et al.  Controllable polymerization of N-carboxy anhydrides in a microreaction system. , 2005, Lab on a chip.

[21]  P. Gennes Coil-stretch transition of dilute flexible polymers under ultrahigh velocity gradients , 1974 .

[22]  Naoki Sugimoto,et al.  Temperature dependence of thermodynamic properties for DNA/DNA and RNA/DNA duplex formation. , 2002, European journal of biochemistry.

[23]  Yung-Chiang Chung,et al.  Microfluidic chip for fast nucleic acid hybridization. , 2003, Lab on a chip.

[24]  A. Keller,et al.  The extensibility of macromolecules in solution; A new focus for macromolecular science , 1985 .

[25]  I. Tinoco,et al.  Stability of ribonucleic acid double-stranded helices. , 1974, Journal of molecular biology.