Confining integro-differential equations originating from evolutionary biology: Ground states and long time dynamics

We consider nonlinear mutation selection models, known as replicator-mutator equations in evolutionary biology. They involve a nonlocal mutation kernel and a confining fitness potential. We prove that the long time behaviour of the Cauchy problem is determined by the principal eigenelement of the underlying linear operator. The novelties compared to the literature on these models are about the case of symmetric mutations: Université de Rouen Normandie, CNRS, Laboratoire de Mathématiques Raphaël Salem, Saint-Etiennedu-Rouvray, France & BioSP, INRAE, 84914, Avignon, France. E-mail: matthieu.alfaro@univ-rouen.fr Université Paris-Saclay, UVSQ, CNRS, Laboratoire de Mathématiques de Versailles, 78000 Versailles, France. Email: pierre.gabriel@uvsq.fr Université Paris-Saclay, UVSQ, CNRS, Laboratoire de Mathématiques de Versailles, 78000 Versailles, France. Email: otared.kavian@uvsq.fr

[1]  Pierre Gabriel,et al.  Spectral Gap for the Growth-Fragmentation Equation via Harris's Theorem , 2021, SIAM Journal on Mathematical Analysis.

[2]  M. Kimura A stochastic model concerning the maintenance of genetic variability in quantitative characters. , 1965, Proceedings of the National Academy of Sciences of the United States of America.

[3]  G. Martin,et al.  Dynamics of adaptation in an anisotropic phenotype-fitness landscape , 2019, bioRxiv.

[4]  J. Coville On a simple criterion for the existence of a principal eigenfunction of some nonlocal operators , 2010, 1106.5137.

[5]  I. Bomze,et al.  STATIONARY DISTRIBUTIONS UNDER MUTATION- SELECTION BALANCE: STRUCTURE AND PROPERTIES , 1996 .

[6]  L. Tartar An Introduction to Sobolev Spaces and Interpolation Spaces , 2007 .

[7]  L. Takhtajan Quantum Mechanics for Mathematicians , 2008 .

[8]  R. Lande The maintenance of genetic variability by mutation in a polygenic character with linked loci. , 2007, Genetical research.

[9]  Lionel Roques,et al.  Mathematical Properties of a Class of Integro-differential Models from Population Genetics , 2017, SIAM J. Appl. Math..

[10]  Bertrand Cloez,et al.  A non‐conservative Harris ergodic theorem , 2019, Journal of the London Mathematical Society.

[11]  Jérôme Coville,et al.  Singular measure as principal eigenfunction of some nonlocal operators , 2013, Appl. Math. Lett..

[12]  R. Nagel,et al.  One-parameter Semigroups of Positive Operators , 1986 .

[13]  G. Legendre,et al.  Concentration Phenomenon in Some Non-Local Equation , 2015, 1510.01971.

[14]  J. Wakano,et al.  Derivation of replicator–mutator equations from a model in population genetics , 2017 .

[15]  Matthieu Alfaro,et al.  Explicit Solutions for Replicator-Mutator Equations: Extinction versus Acceleration , 2014, SIAM J. Appl. Math..

[16]  Matthieu Alfaro,et al.  Evolutionary Branching via Replicator–Mutator Equations , 2018, Journal of Dynamics and Differential Equations.

[17]  S. Mischler,et al.  Spectral analysis of semigroups and growth-fragmentation equations , 2013, 1310.7773.

[18]  William G. Faris Review: Michael Reed and Barry Simon, Methods of modern mathematical physics, vol. III, Scattering theory, and Michael Reed and Barry Simon, Methods of modern mathematical physics, vol. IV, Analysis of operators , 1980 .

[19]  R. Bürger On the maintenance of genetic variation: global analysis of Kimura's continuum-of-alleles model , 1986, Journal of mathematical biology.

[20]  R. Buerger The Mathematical Theory of Selection, Recombination, and Mutation , 2000 .

[21]  G. Martin,et al.  Dynamics of fitness distributions in the presence of a phenotypic optimum: an integro-differential approach , 2018, bioRxiv.

[22]  R. Nagel,et al.  One-parameter semigroups for linear evolution equations , 1999 .

[23]  Reinhard Biirger Perturbations of positive semigroups and applications to population genetics , 1988 .

[24]  Q. Griette Singular measure traveling waves in an epidemiological model with continuous phenotypes , 2017, Transactions of the American Mathematical Society.

[25]  R. Carles,et al.  Replicator-mutator equations with quadratic fitness , 2016, 1611.06119.

[26]  Wendell H. Fleming,et al.  Equilibrium Distributions of Continuous Polygenic Traits , 1979 .

[27]  R. Bürger An integro-differential equation from population genetics and perturbations of differentiable semigroups in Fréchet spaces , 1991, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[28]  R. Ferrière,et al.  From Individual Stochastic Processes to Macroscopic Models in Adaptive Evolution , 2008 .

[29]  Xuefeng Wang,et al.  On eigenvalue problems arising from nonlocal diffusion models , 2016 .