Stellar Flyby Analysis for Spiral Arm Hosts with Gaia DR3

Scattered-light imaging studies have detected nearly two dozen spiral arm systems in circumstellar disks, yet the formation mechanisms for most of them are still under debate. Although existing studies can use motion measurements to distinguish leading mechanisms such as planet–disk interaction and disk self-gravity, close-in stellar flybys can induce short-lived spirals and even excite arm-driving planets into highly eccentric orbits. With unprecedented stellar location and proper-motion measurements from Gaia Data Release 3 (DR3), here we study for known spiral arm systems their flyby history with their stellar neighbors by formulating an analytical on-sky flyby framework. For stellar neighbors currently located within 10 pc of the spiral hosts, we restrict the flyby time to within the past 104 yr and the flyby distance to within 10 times the disk extent in scattered light. Among a total of 12,570 neighbors that are identified in Gaia DR3 for 20 spiral systems, we do not identify credible flyby candidates for isolated systems. Our analysis suggests that a close-in recent flyby is not the dominant formation mechanism for isolated spiral systems in scattered light.

[1]  A. Isella,et al.  ALMA Detection of Dust Trapping around Lagrangian Points in the LkCa 15 Disk , 2022, The Astrophysical Journal Letters.

[2]  P. Kalas,et al.  Search for Stellar Flybys in the Sco-Cen OB Association with the Gaia DR2 , 2022, The Astronomical Journal.

[3]  O. Voziakova,et al.  Apparent Motion of the Circumstellar Envelope of CQ Tau in Scattered Light , 2021, The Astronomical Journal.

[4]  S. Pfalzner,et al.  Close Stellar Flybys Common in Low-mass Clusters , 2021, The Astrophysical Journal.

[5]  A. Boccaletti,et al.  Investigating point sources in MWC 758 with SPHERE , 2021, Astronomy & Astrophysics.

[6]  D. Mesa,et al.  Unveiling the star formation history of the Upper Scorpius association through its kinematics , 2021, Monthly Notices of the Royal Astronomical Society.

[7]  R. Soummer,et al.  A Layered Debris Disk around M Star TWA 7 in Scattered Light , 2021, The Astrophysical Journal.

[8]  D. Mawet,et al.  Spiral Arm Pattern Motion in the SAO 206462 Protoplanetary Disk , 2020, The Astrophysical Journal.

[9]  P. Kalas,et al.  First Detection of Orbital Motion for HD 106906 b: A Wide-separation Exoplanet on a Planet Nine–like Orbit , 2020, The Astronomical Journal.

[10]  P. J. Richards,et al.  Gaia Early Data Release 3: Summary of the contents and survey properties , 2020, 2012.01533.

[11]  Jason J. Wang,et al.  Early High-contrast Imaging Results with Keck/NIRC2-PWFS: The SR 21 Disk , 2020, The Astronomical Journal.

[12]  P. Schneider,et al.  Possible Time Correlation between Jet Ejection and Mass Accretion for RW Aur A , 2020, The Astrophysical Journal.

[13]  Timothy D. Brandt,et al.  SCExAO/CHARIS High-contrast Imaging of Spirals and Darkening Features in the HD 34700 A Protoplanetary Disk , 2020, The Astrophysical Journal.

[14]  Julien H. Girard,et al.  Dynamical Evidence of a Spiral Arm–driving Planet in the MWC 758 Protoplanetary Disk , 2020, Astrophysical Journal.

[15]  Daniel J. Price,et al.  Ongoing flyby in the young multiple system UX Tauri , 2020, Astronomy & Astrophysics.

[16]  Zhaohuan Zhu,et al.  The Planetary Luminosity Problem: “Missing Planets” and the Observational Consequences of Episodic Accretion , 2020, The Astrophysical Journal.

[17]  T. Henning,et al.  Spirals inside the millimeter cavity of transition disk SR 21 , 2020, Astronomy & Astrophysics.

[18]  C. Dominik,et al.  Spiral arms in the protoplanetary disc HD100453 detected with ALMA: evidence for binary–disc interaction and a vertical temperature gradient , 2019, Monthly Notices of the Royal Astronomical Society.

[19]  Daniel J. Price,et al.  Flybys in protoplanetary discs – II. Observational signatures , 2019, Monthly Notices of the Royal Astronomical Society.

[20]  Julien H. Girard,et al.  Polarimetric imaging mode of VLT/SPHERE/IRDIS , 2019, Astronomy & Astrophysics.

[21]  Julien H. Girard,et al.  The polarimetric imaging mode of VLT/SPHERE/IRDIS I: Description, data reduction and observing strategy , 2019, 1909.13107.

[22]  Zhaohuan Zhu,et al.  An Ideal Testbed for Planet–Disk Interaction: Two Giant Protoplanets in Resonance Shaping the PDS 70 Protoplanetary Disk , 2019, The Astrophysical Journal.

[23]  Jason J. Wang,et al.  An Exo–Kuiper Belt with an Extended Halo around HD 191089 in Scattered Light , 2019, The Astrophysical Journal.

[24]  P. Kalas,et al.  A Near-coplanar Stellar Flyby of the Planet Host Star HD 106906 , 2019, The Astronomical Journal.

[25]  John D. Monnier,et al.  Multiple Spiral Arms in the Disk around Intermediate-mass Binary HD 34700A , 2019, The Astrophysical Journal.

[26]  Luca Ricci,et al.  The Disk Substructures at High Angular Resolution Project (DSHARP). IV. Characterizing Substructures and Interactions in Disks around Multiple Star Systems , 2018, The Astrophysical Journal.

[27]  Luca Ricci,et al.  The Disk Substructures at High Angular Resolution Project (DSHARP). VII. The Planet–Disk Interactions Interpretation , 2018, The Astrophysical Journal.

[28]  Daniel J. Price,et al.  Flybys in protoplanetary discs: I. Gas and dust dynamics , 2018, Monthly Notices of the Royal Astronomical Society.

[29]  Jaehan Bae,et al.  Diverse Protoplanetary Disk Morphology Produced by a Jupiter-mass Planet , 2018, The Astrophysical Journal.

[30]  Ruobing Dong,et al.  Spiral Arms in Disks: Planets or Gravitational Instability? , 2018, The Astrophysical Journal.

[31]  et al,et al.  Gaia Data Release 2 , 2018, Astronomy & Astrophysics.

[32]  Joseph E. Rodriguez,et al.  Multiple Stellar Flybys Sculpting the Circumstellar Architecture in RW Aurigae , 2018, The Astrophysical Journal.

[33]  R. Soummer,et al.  A Decade of MWC 758 Disk Images: Where Are the Spiral-arm-driving Planets? , 2018, 1803.06776.

[34]  A. Robin,et al.  BANYAN. XI. The BANYAN Σ Multivariate Bayesian Algorithm to Identify Members of Young Associations with 150 pc , 2018, 1801.09051.

[35]  Julien H. Girard,et al.  Combining angular differential imaging and accurate polarimetry with SPHERE/IRDIS to characterize young giant exoplanets , 2017, Optical Engineering + Applications.

[36]  D. Apai,et al.  NGC 1980 Is Not a Foreground Population of Orion: Spectroscopic Survey of Young Stars with Low Extinction in Orion A , 2017, 1703.06948.

[37]  K. Cruz,et al.  LACEwING: A New Moving Group Analysis Code , 2017, 1702.02219.

[38]  C. Clarke,et al.  A tidal encounter caught in the act: modelling a star–disc fly-by in the young RW Aurigae system , 2015, 1502.06649.

[39]  Daniel Foreman-Mackey,et al.  emcee: The MCMC Hammer , 2012, 1202.3665.

[40]  David Mouillet,et al.  Photometric characterization of exoplanets using angular and spectral differential imaging , 2010, 1004.4825.

[41]  Kjetil Dohlen,et al.  The infra-red dual imaging and spectrograph for SPHERE: design and performance , 2008, Astronomical Telescopes + Instrumentation.

[42]  S. R. Pottasch,et al.  A spectroscopic atlas of post-AGB stars and planetary nebulae selected from the IRAS point source catalogue , 2006, astro-ph/0608080.

[43]  J. Pety,et al.  Tidal stripping and disk kinematics in the RW Aurigae system , 2006 .

[44]  A. Tokovinin,et al.  HD 34700 is a T Tauri multiple system , 2005 .

[45]  S.Pfalzner Angular Momentum Transfer in Star-Discs Encounters: The Case of Low-Mass Discs , 2003, astro-ph/0310743.

[46]  S. Pfalzner Spiral Arms in Accretion Disk Encounters , 2003 .

[47]  C. Koresko,et al.  A Search for Close Binaries in the ρ Ophiuchi Star-forming Region , 2003, astro-ph/0303595.

[48]  T. Greene,et al.  Astrophysics of Young Star Binaries , 2002, astro-ph/0211376.

[49]  M. Rosenblatt Remarks on a Multivariate Transformation , 1952 .