Historic wandering domains near cycles

We explain how to obtain non-trivial historic contractive wandering domains for a dense set of diffeomorphisms in certain type of Newhouse domains of homoclinic tangencies in dimension d ≥ 3. We show how these Newhouse domains can be obtained arbitrarily close to diffeomorphisms displaying heterodimensional or equidimensional cycles associated with periodic points with complex multipliers.

[1]  C. Bonatti,et al.  On maximal transitive sets of generic diffeomorphisms , 2003 .

[2]  C. Moreira There are no C1-stable intersections of regular Cantor sets , 2009, 0901.3131.

[3]  Yuri A. Kuznetsov,et al.  Generalized Hénon Map and Bifurcations of Homoclinic Tangencies , 2005, SIAM J. Appl. Dyn. Syst..

[4]  C. Bonatti,et al.  ROBUST HETERODIMENSIONAL CYCLES AND $C^1$-GENERIC DYNAMICS , 2007, Journal of the Institute of Mathematics of Jussieu.

[5]  Carl P. Simon,et al.  A 3-dimensional Abraham-Smale example , 1972 .

[6]  Shin Kiriki,et al.  Takens' last problem and existence of non-trivial wandering domains , 2015, 1503.06258.

[7]  M. Lyubich Non-existence of wandering intervals and structure of topological attractors of one dimensional dynamical systems: 1. The case of negative Schwarzian derivative , 1989, Ergodic Theory and Dynamical Systems.

[8]  J. C. Tatjer Three-dimensional dissipative diffeomorphisms with homoclinic tangencies , 2001, Ergodic Theory and Dynamical Systems.

[9]  S. Newhouse,et al.  The abundance of wild hyperbolic sets and non-smooth stable sets for diffeomorphisms , 1979 .

[10]  Pablo G. Barrientos,et al.  Robust Heteroclinic Tangencies , 2019, Bulletin of the Brazilian Mathematical Society, New Series.

[11]  Pablo G. Barrientos,et al.  Historic behavior in nonhyperbolic homoclinic classes , 2019, Proceedings of the American Mathematical Society.

[12]  P. Bohl Über die Hinsichtlich der Unabhängigen und Abhängigen Variabeln Periodische Differentialgleichung Erster Ordnung , 1916 .

[13]  D. Sullivan,et al.  WANDERING DOMAINS AND INVARIANT CONFORMAL STRUCTURES FOR MAPPINGS OF THE 2-TORUS , 1996 .

[14]  Christian Bonatti,et al.  Persistent nonhyperbolic transitive diffeomorphisms , 1996 .

[15]  W. Kyner Invariant Manifolds , 1961 .

[16]  Yushi Nakano,et al.  Non-trivial wandering domains for heterodimensional cycles , 2016, 1610.02734.

[17]  Patrick D. McSwiggen Diffeomorphisms of the torus with wandering domains , 1993 .

[18]  Christian Bonatti,et al.  Connexions hétéroclines et généricité d'une infinité de puits et de sources , 1999 .

[19]  C. Tresser,et al.  Wandering domains for infinitely renormalizable diffeomorphisms of the disk , 1994 .

[20]  V. Marković,et al.  Topological Entropy and Diffeomorphisms of Surfaces with Wandering Domains , 2009, 0910.1316.

[21]  L. Díaz,et al.  Stabilization of heterodimensional cycles , 2011, 1104.0980.

[22]  Eduardo Colli Infinitely many coexisting strange attractors , 1998 .

[23]  M. Lyubich,et al.  Non-existence of wandering intervals and structure of topological attractors of one dimensional dynamical systems 2. The smooth case , 1989, Ergodic Theory and Dynamical Systems.

[24]  J. C. Tatjer,et al.  Dynamics near homoclinic bifurcations of three-dimensional dissipative diffeomorphisms , 2006 .

[25]  N. Romero Persistence of homoclinic tangencies in higher dimensions , 1995, Ergodic Theory and Dynamical Systems.

[26]  L. Shilnikov,et al.  On dynamical properties of multidimensional diffeomorphisms from Newhouse regions: I , 2008 .

[27]  Floris Takens,et al.  Hyperbolicity and sensitive chaotic dynamics at homoclinic bifurcations : fractal dimensions and infinitely many attractors , 1993 .

[28]  Pablo G. Barrientos,et al.  Robust tangencies of large codimension , 2017, 1707.05638.

[29]  D. Ruelle Historical behaviour in smooth dynamical systems , 2001 .

[30]  B. Leal High dimension diffeomorphisms exhibiting infinitely many strange attractors , 2008 .

[31]  Masayuki Asaoka Hyperbolic sets exhibiting ¹-persistent homoclinic tangency for higher dimensions , 2007 .

[32]  J. Palis,et al.  High dimension diffeomorphisms displaying infinitely many periodic attractors , 1994 .

[33]  Eduardo Colli,et al.  Non-trivial wandering domains and homoclinic bifurcations , 2001, Ergodic Theory and Dynamical Systems.

[34]  J. Buzzi,et al.  The entropy of C-diffeomorphisms without a dominated splitting , 2016 .

[35]  A. Denjoy,et al.  Sur les courbes définies par les équations différentielles à la surface du tore , 1932 .

[36]  V. Kaloshin,et al.  Generic 3-dimensional volume-preserving diffeomorphisms with superexponential growth of number of periodic orbits , 2006 .

[37]  David G. Sullivan,et al.  Solution of the Fatou - Julia problem on wandering domains , 1985 .

[38]  Masayuki Asaoka Erratum to "Hyperbolic sets exhibiting C^1 -persistent homoclinic tangency for higher dimensions'' , 2010 .

[39]  Robert Roussarie,et al.  Invariant circles in the Bogdanov-Takens bifurcation for diffeomorphisms , 1996, Ergodic Theory and Dynamical Systems.

[40]  U. Bader,et al.  Ergodic Theory and Dynamical Systems , 2013 .

[41]  V. S. Gonchenko,et al.  Bifurcations of three-dimensional diffeomorphisms with non-simple quadratic homoclinic tangencies and generalized Hénon maps , 2007 .

[42]  H. P. Annales de l'Institut Henri Poincaré , 1931, Nature.