Radiative Characteristics of Cirrus Clouds as Retrieved from AVHRR

An algorithm is developed to retrieve the effective particle radius, cloud optical thickness, and cloud top temperature of cirrus clouds on a global scale using two infrared window channels and a nearinfrared channel of the National Oceanic and Atmospheric Administration (NOAA) Advanced Very High Resolution Radiometer (AVHRR) on board NOAA-9 and NOAA-11. In the algorithm, overlapped cloud cases are taken into account. Data from the satellites are reconstructed to segmented data that contain a hundred satellite pixels in each 0.5 � � 0.5 � latitude and longitude grid. The algorithm is applied to fourmonth segmented AVHRR Global Area Coverage data from 1986 through 1994. The resulted cloud parameters are compared with airborne measurements and the products of International Satellite Cloud Climatology Project (ISCCP). These comparisons show that the effective radius obtained by this algorithm is smaller than that by airborne measurements, and that the cirrus cloud top temperature is about 5@20 K lower than that of ISCCP. The global distribution, and the time series of these parameters, are shown and discussed.

[1]  Andrew J. Heymsfield,et al.  High Albedos of Cirrus in the Tropical Pacific Warm Pool: Microphysical Interpretations from CEPEX and from Kwajalein, Marshall Islands , 1996 .

[2]  R. Lawson,et al.  In Situ Observations of the Microphysical Properties of Wave, Cirrus, and Anvil Clouds. Part II: Cirrus Clouds , 2006 .

[3]  Paul Pellegrino,et al.  Monitoring the Mt. Pinatubo aerosol layer with NOAA/11 AVHRR data , 1992 .

[4]  M. Baker,et al.  Cloud Microphysics and Climate , 1997 .

[5]  John F. B. Mitchell,et al.  Intercomparison and interpretation of climate feedback processes in 19 atmospheric general circulation models , 1990 .

[6]  Paul W. Stackhouse,et al.  The Relevance of the Microphysical and Radiative Properties of Cirrus Clouds to Climate and Climatic Feedback , 1990 .

[7]  Teruyuki Nakajima,et al.  A Global Determination of Cloud Microphysics with AVHRR Remote Sensing , 2001 .

[8]  Thomas F. Eck,et al.  Nimbus-7 Global Cloud Climatology. Part II: First Year Results , 1989 .

[9]  Andrew J. Heymsfield,et al.  Parameterizations for the cross-sectional area and extinction of cirrus and stratiform ice cloud particles , 2003 .

[10]  S. Kinne,et al.  Microphysical modeling of cirrus: 1. Comparison with 1986 FIRE IFO measurements , 1994 .

[11]  Kenneth Sassen,et al.  Haze Particle Nucleation Simulations in Cirrus Clouds, and Applications for Numerical and Lidar Studies , 1989 .

[12]  Hajime Okamoto,et al.  An algorithm for retrieval of cloud microphysics using 95-GHz cloud radar and lidar , 2003 .

[13]  W. Rossow,et al.  Advances in understanding clouds from ISCCP , 1999 .

[14]  Andrew J. Heymsfield,et al.  A parameterization of the particle size spectrum of ice clouds in terms of the ambient temperature and the ice water content , 1984 .

[15]  W. Menzel,et al.  Four Years of Global Cirrus Cloud Statistics Using HIRS, Revised , 1994 .

[16]  Arlin J. Krueger,et al.  Global tracking of the SO2 clouds from the June , 1992 .

[17]  W. Menzel,et al.  Eight Years of High Cloud Statistics Using HIRS , 1999 .

[18]  D. Hartmann,et al.  The Effect of Cloud Type on Earth's Energy Balance: Global Analysis , 1992 .

[19]  Harshvardhan,et al.  Interactions among Radiation, Convection, and Large-Scale Dynamics in a General Circulation Model , 1989 .

[20]  John Hallett,et al.  Degradation of In-Cloud Forward Scattering Spectrometer Probe Measurements in the Presence of Ice Particles , 1985 .

[21]  Bryan A. Baum,et al.  Remote Sounding of Cirrus Cloud Optical Depths and Ice Crystal Sizes from AVHRR Data: Verification Using FIRE II IFO Measurements , 1995 .

[22]  Andrew A. Lacis,et al.  Sensitivity of cirrus cloud albedo, bidirectional reflectance and optical thickness retrieval accuracy to ice particle shape , 1996 .

[23]  Akihiro Uchiyama,et al.  NOTES AND CORRESPONDENCE : Spectral Optical Thickness and Size Distribution of the Pinatubo Volcanic Aerosols as Estimated by Ground-Based Sunphotometry , 1993 .

[24]  G. Visconti,et al.  The Mount Pinatubo eruption : effects on the atmosphere and climate , 1996 .

[25]  J. Spinhirne,et al.  Cirrus infrared parameters and shortwave reflectance relations from observations , 1996 .

[26]  Veerabhadran Ramanathan,et al.  The role of earth radiation budget studies in climate and general , 1987 .

[27]  Alfred J Prata,et al.  Observations of volcanic ash clouds in the 10-12 μm window using AVHRR/2 data , 1989 .

[28]  M. McCormick,et al.  A 6‐year climatology of cloud occurrence frequency from Stratospheric Aerosol and Gas Experiment II observations (1985–1990) , 1996 .

[29]  L. E. Mauldin,et al.  Stratospheric Aerosol And Gas Experiment II Instrument: A Functional Description , 1985 .

[30]  K. Liou Light scattering by ice clouds in the visible and infrared - A theoretical study. , 1972 .

[31]  William B. Rossow,et al.  ISCCP global radiance data set: a new resource for climate research , 1985 .

[32]  L. Radke,et al.  A Summary of the Physical Properties of Cirrus Clouds , 1990 .

[33]  Thomas P. Charlock,et al.  The Albedo Field and Cloud Radiative Forcing Produced by a General Circulation Model with Internally Generated Cloud Optics , 1985 .

[34]  Toshiro Inoue,et al.  A cloud type classification with NOAA 7 split‐window measurements , 1987 .

[35]  K. Liou Influence of Cirrus Clouds on Weather and Climate Processes: A Global Perspective , 1986 .

[36]  Andrew J. Heymsfield,et al.  Parameterization of Tropical Cirrus Ice Crystal Size Distributions and Implications for Radiative Transfer: Results from CEPEX , 1997 .

[37]  J. Houghton,et al.  Climate change 1995: the science of climate change. , 1996 .

[38]  Teruyuki Nakajima,et al.  Matrix formulations for the transfer of solar radiation in a plane-parallel scattering atmosphere. , 1986 .

[39]  Sergey Y. Matrosov,et al.  Radar and Radiation Properties of Ice Clouds , 1995 .

[40]  Gerald G. Mace,et al.  The Composite Characteristics of Cirrus Clouds: Bulk Properties Revealed by One Year of Continuous Cloud Radar Data , 2001 .

[41]  K. Sassen Evidence for Liquid-Phase Cirrus Cloud Formation from Volcanic Aerosols: Climatic Implications , 1992, Science.

[42]  Teruyuki Nakajima,et al.  Algorithms for radiative intensity calculations in moderately thick atmospheres using a truncation approximation , 1988 .

[43]  A. Lacis,et al.  Near-Global Survey of Effective Droplet Radii in Liquid Water Clouds Using ISCCP Data. , 1994 .

[44]  K. Liou,et al.  Remote sensing of cirrus cloud parameters using advanced very-high-resolution radiometer 3.7- and 1 O.9-microm channels. , 1993, Applied optics.

[45]  I. P. Mazin,et al.  An empirical model of the physical structure of upper-layer clouds , 1991 .

[46]  John B. Anderson,et al.  Temporal changes of Mount Pinatubo aerosol characteristics over northern midlatitudes derived from SAGE II extinction measurements , 1996 .

[47]  Toshiro Inoue,et al.  On the Temperature and Effective Emissivity Determination of Semi-Transparent Cirrus Clouds by Bi-Spectral Measurements in the 10μm Window Region , 1985 .

[48]  Qingyuan Han,et al.  Three Different Behaviors of Liquid Water Path of Water Clouds in Aerosol-Cloud Interactions , 2002 .

[49]  Alexei Korolev,et al.  NOTES AND CORRESPONDENCE Airspeed Corrections for Optical Array Probe Sample Volumes , 1997 .

[50]  Andrew J. Heymsfield,et al.  A Balloon-Borne Continuous Cloud Particle Replicator for Measuring Vertical Profiles of Cloud Microphysical Properties: Instrument Design, Performance, and Collection Efficiency Analysis , 1997 .

[51]  Bryan A. Baum,et al.  Detection of Multilayer Cirrus Cloud Systems Using AVHRR Data: Verification Based on FIRE II IFO Composite Measurements , 1996 .

[52]  L. J. Cox Optical Properties of the Atmosphere , 1979 .

[53]  K. Stamnes,et al.  Numerically stable algorithm for discrete-ordinate-method radiative transfer in multiple scattering and emitting layered media. , 1988, Applied optics.

[54]  D. Rind,et al.  Comparison between SAGE II and ISCCP high‐level clouds: 2. Locating cloud tops , 1995 .

[55]  V. Giraud,et al.  Large-Scale Analysis of Cirrus Clouds from AVHRR Data: Assessment of Both a Microphysical Index and the Cloud-Top Temperature , 1997 .

[56]  Graeme L. Stephens,et al.  Light scattering by rectangular solids in the discrete-dipole approximation: a new algorithm exploiting the Block–Toeplitz structure , 1990 .

[57]  Teruyuki Nakajima,et al.  The Microphysical Feedback of Cirrus Cloud in Climate Change , 1993 .

[58]  Andrew J. Heymsfield,et al.  Relative Humidity and Temperature Influences on Cirrus Formation and Evolution: Observations from Wave Clouds and FIRE II , 1995 .

[59]  B. Barkstrom,et al.  Cloud-Radiative Forcing and Climate: Results from the Earth Radiation Budget Experiment , 1989, Science.

[60]  Transfer of polarized infrared radiation in optically anisotropic media: application to horizontally oriented ice crystals , 1993 .

[61]  D. Rind,et al.  Comparison between SAGE II and ISCCP high-level clouds: 1. Global and zonal mean cloud amounts , 1995 .

[62]  W. Rossow,et al.  ISCCP Cloud Data Products , 1991 .

[63]  T. Inoue Features of Clouds over the Tropical Pacific during Northern Hemispheric Winter Derived from Split W , 1989 .

[64]  M. Poellot,et al.  Role of small ice crystals in radiative properties of cirrus: a case study , 1994 .

[65]  Hajime Okamoto,et al.  Modeling of backscattering by non-spherical ice particles for the interpretation of cloud radar signals at 94 GHz. An error analysis , 1995 .

[66]  B. Strauss,et al.  In-Situ Observations of the Microphysical Properties of Young Cirrus Clouds , 1997 .

[67]  Guy Febvre,et al.  The Reliability of the PMS FSSP in the Presence of Small Ice Crystals , 1996 .

[68]  A. Heymsfield Ice Particles Observed in a Cirriform Cloud at , 1986 .

[69]  M. P. McCormick,et al.  Sage II: An overview , 1987 .

[70]  Robert G. Knollenberg,et al.  The Optical Array: An Alternative to Scattering or Extinction for Airborne Particle Size Determination , 1970 .

[71]  H. Griffiths,et al.  Swath altimetry of oceans and terrain , 1987 .

[72]  J. Coakley,et al.  Retrieval of properties for semitransparent clouds from multispectral infrared imagery data , 1993 .

[73]  D. Randall,et al.  Mission to planet Earth: Role of clouds and radiation in climate , 1995 .

[74]  J. Wilson,et al.  Measurements of high number densities of ice crystals in the tops of tropical cumulonimbus , 1993 .

[75]  A Lacis,et al.  Climate forcings in the industrial era. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[76]  A. Macke,et al.  Scattering of light by polyhedral ice crystals. , 1993, Applied optics.

[77]  J. Houghton,et al.  Climate change 2001 : the scientific basis , 2001 .