Icebergs as unique Lagrangian ecosystems in polar seas.

Global warming and its disproportionate impact on polar regions have led to increased iceberg populations. Southern Ocean studies in the northwest Weddell Sea have verified substantial delivery of terrestrial material accompanied by increased primary production and faunal abundance associated with free-drifting icebergs. It is hypothesized that input and utilization of macro- and micronutrients are promoted by conditions unique to free-drifting icebergs, leading to increased production, grazing, and export of organic carbon. In Arctic regions, increased freshwater input from meltwater acts to stratify and stabilize the upper water column. As has been observed in the Southern Ocean, Arctic-region icebergs should drive turbulent upwelling and reduce stratification, potentially leading to increased nitrate delivery to the local ecosystem. Increasing populations of icebergs in polar regions can potentially be important in mediating the drawdown and sequestration of CO(2) and can thus impact the oceanic carbon cycle.

[1]  K. Arrigo,et al.  Impact of iceberg C‐19 on Ross Sea primary production , 2003 .

[2]  E. Fahrbach,et al.  Upper ocean diapycnal mixing in the northwestern Weddell Sea , 2002 .

[3]  Eric Rignot,et al.  Antarctic grounding line mapping from differential satellite radar interferometry , 2011 .

[4]  M. Ardelan,et al.  Shelf‐derived iron inputs drive biological productivity in the southern Drake Passage , 2009 .

[5]  Richard S. Lampitt,et al.  Southern Ocean deep-water carbon export enhanced by natural iron fertilization , 2009, Nature.

[6]  W. Fraser,et al.  Habitat selection by marine mammals in the marginal ice zone , 1991, Antarctic Science.

[7]  Jonathan L. Bamber,et al.  Keel depths of modern Antarctic icebergs and implications for sea-floor scouring in the geological record , 2007 .

[8]  Anny Cazenave,et al.  Contemporary sea level rise. , 2010, Annual review of marine science.

[9]  S. Neshyba Upwelling by icebergs , 1977, Nature.

[10]  Wkw Li,et al.  Phytoplankton growth and regulation in the Labrador Sea: light and nutrient limitation , 2008 .

[11]  J. Deming,et al.  Evidence for microbial attenuation of particle flux in the Amundsen Gulf and Beaufort Sea: elevated hydrolytic enzyme activity on sinking aggregates , 2011, Polar Biology.

[12]  M. R. van den Broeke,et al.  Partitioning Recent Greenland Mass Loss , 2009, Science.

[13]  Kenneth L. Smith,et al.  Algal communities attached to free-drifting, Antarctic icebergs , 2011 .

[14]  Carsten Braun,et al.  Sharply increased mass loss from glaciers and ice caps in the Canadian Arctic Archipelago , 2011, Nature.

[15]  B. Twining,et al.  Chemical speciation of iron in Antarctic waters surrounding free-drifting icebergs , 2012 .

[16]  I. Polyakov,et al.  Vertical mixing at intermediate depths in the Arctic boundary current , 2009 .

[17]  Kenneth L. Smith,et al.  Carbon export associated with free-drifting icebergs in the Southern Ocean , 2011 .

[18]  Rupert Gladstone,et al.  Iceberg trajectory modeling and meltwater injection in the Southern Ocean , 2001 .

[19]  A. Murray,et al.  Marine bacterioplankton biomass, activity and community structure in the vicinity of Antarctic icebergs , 2011 .

[20]  Janet Sprintall,et al.  Subsurface melting of a free-floating Antarctic iceberg , 2011 .

[21]  C. Nøhr,et al.  Inflow of Warm Circumpolar Deep Water in the Central Amundsen Shelf , 2010 .

[22]  Eric Rignot,et al.  Acceleration of the contribution of the Greenland and Antarctic ice sheets to sea level rise , 2011 .

[23]  G. Tarran,et al.  Coccolithophore dynamics in non‐bloom conditions during late summer in the central Iceland Basin (July‐August 2007) , 2010 .

[24]  S. Stammerjohn,et al.  Sea ice in the western Antarctic Peninsula region : Spatio-temporal variability from ecological and climate change perspectives , 2008 .

[25]  J. Sarmiento,et al.  Three‐dimensional simulations of the impact of Southern Ocean nutrient depletion on atmospheric CO2 and ocean chemistry , 1991 .

[26]  R. Raiswell Iceberg-hosted nanoparticulate Fe in the Southern Ocean: Mineralogy, origin, dissolution kinetics and source of bioavailable Fe , 2011 .

[27]  C. Sancetta Primary production in the glacial North Atlantic and North Pacific oceans , 1992, Nature.

[28]  G. Dieckmann,et al.  Antarctic Sea Ice--a Habitat for Extremophiles , 2002, Science.

[29]  J. G. Ferrigno,et al.  Retreating Glacier Fronts on the Antarctic Peninsula over the Past Half-Century , 2005, Science.

[30]  Duncan J. Wingham,et al.  Spatial and temporal evolution of Pine Island Glacier thinning, 1995–2006 , 2009 .

[31]  Taro Takahashi,et al.  Southern Ocean Iron Enrichment Experiment: Carbon Cycling in High- and Low-Si Waters , 2004, Science.

[32]  D. Ainley,et al.  The Marine Ecology of Birds in the Ross Sea, Antarctica , 1984 .

[33]  John E. Walsh,et al.  Polar regions (Arctic and Antarctic) , 2001 .

[34]  O. Schofield,et al.  Summertime grazing impact of the dominant macrozooplankton off the Western Antarctic Peninsula , 2012 .

[35]  T. Scambos,et al.  The link between climate warming and break-up of ice shelves in the Antarctic Peninsula , 2000, Journal of Glaciology.

[36]  E. Murphy,et al.  Advective pathways near the tip of the Antarctic Peninsula: Trends, variability and ecosystem implications , 2012 .

[37]  W. G. Rees,et al.  A technique for the identification and analysis of icebergs in synthetic aperture radar images of Antarctica , 1999 .

[38]  F. Dehairs,et al.  The distribution of Fe in the antarctic circumpolar current , 1997 .

[39]  M. Perry,et al.  Optimizing Models of the North Atlantic Spring Bloom Using Physical, Chemical and Bio-Optical Observations from a Lagrangian Float , 2010 .

[40]  I. Yashayaev Hydrographic changes in the Labrador Sea, 1960–2005 , 2007 .

[41]  J. Tremblay,et al.  The effects of irradiance and nutrient supply on the productivity of Arctic waters: a perspective on climate change , 2009 .

[42]  J. Dowdeswell,et al.  The sizes, frequencies, and freeboards of East Greenland icebergs observed using ship radar and sextant , 1992 .

[43]  B. Quéguiner,et al.  Effect of natural iron fertilization on carbon sequestration in the Southern Ocean , 2007, Nature.

[44]  E. Shulenberger Water-column studies near a melting Arctic iceberg , 1983, Polar Biology.

[45]  H. Goosse,et al.  Spatial distribution of the iron supply to phytoplankton in the Southern Ocean: a model study , 2009 .

[46]  P. Rhines,et al.  Convection and restratification in the Labrador Sea, 1990-2000 , 2002 .

[47]  M. Vernet,et al.  THALASSIONEIS SIGNYENSIS (BACILLARIOPHYCEAE) FROM NORTHWEST WEDDELL SEA ICEBERGS, AN EMENDATION OF THE GENERIC DESCRIPTION 1 , 2012, Journal of phycology.

[48]  Monica Kristensen,et al.  Iceberg calving and deterioration in Antarctica , 1983 .

[49]  Peter Winsor,et al.  Mixing across the Arctic Ocean: Microstructure observations during the Beringia 2005 Expedition , 2008 .

[50]  G. Haug,et al.  The polar ocean and glacial cycles in atmospheric CO2 concentration , 2010, Nature.

[51]  B. Robison,et al.  Effects of seasonal pack ice on the distribution of macrozooplankton and micronekton in the northwestern Weddell Sea , 1995 .

[52]  B. Robison,et al.  Composition and structure of macrozooplankton and micronekton communities in the vicinity of free-drifting Antarctic icebergs , 2011 .

[53]  H. Ruhl,et al.  Seabird aggregation around free-drifting icebergs in the northwest Weddell and Scotia Seas , 2011 .

[54]  Donald J. Cavalieri,et al.  Variability of Antarctic Sea Ice 1979-1998 , 2013 .

[55]  H. Svendsen,et al.  Observations of turbulent mixing and hydrography in the marginal ice zone of the Barents Sea , 2007 .

[56]  K. Arrigo,et al.  Antarctic sea ice : biological processes, interactions and variability , 1998 .

[57]  P. Tréguer,et al.  On iron limitation of the Southern Ocean : experimental observations in the Weddell and Scotia Seas. , 1990 .

[58]  Thorsten Markus,et al.  Ecological impact of a large Antarctic iceberg , 2002 .

[59]  S. Fitzwater,et al.  Iron in Antarctic waters , 1990, Nature.

[60]  V. Smetácek,et al.  Importance of iron for plankton blooms and carbon dioxide drawdown in the Southern Ocean , 1995, Nature.

[61]  J. Wahr,et al.  Measurements of Time-Variable Gravity Show Mass Loss in Antarctica , 2006, Science.

[62]  J. Karstensen,et al.  Interannual variability of newly formed Labrador Sea Water from 1994 to 2005 , 2006 .

[63]  Kenneth L. Smith,et al.  234Th-Based Carbon Export around Free-Drifting Icebergs in the Southern Ocean , 2011 .

[64]  David G. Long,et al.  Tracking large tabular icebergs using the SeaWinds Ku-band microwave scatterometer , 2011 .

[65]  B. Robison,et al.  Near-field zooplankton, ice-face biota and proximal hydrography of free-drifting Antarctic icebergs , 2011 .

[66]  Maria Vernet,et al.  Phytoplankton composition and abundance in relation to free-floating Antarctic icebergs , 2011 .

[67]  S. Kawaguchi,et al.  Variable food absorption by Antarctic krill: Relationships between diet, egestion rate and the composition and sinking rates of their fecal pellets , 2012 .

[68]  Jae-Shin Kang,et al.  Antarctic Phytoplankton Assemblages in the Marginal Ice Zone of the Northwestern Weddell Sea , 2001 .

[69]  G. Knox The biology of the southern ocean , 1995 .

[70]  T. Haskell,et al.  Flow and mixing near a glacier tongue: a pilot study , 2011 .

[71]  David W. J. Thompson,et al.  Interpretation of Recent Southern Hemisphere Climate Change , 2002, Science.

[72]  D. M. Nelson,et al.  Importance of Ice Edge Phytoplankton Production in the Southern Ocean , 1986 .

[73]  Corinne Le Quéré,et al.  Role of Marine Biology in Glacial-Interglacial CO2 Cycles , 2005, Science.

[74]  C. Barbante,et al.  Southern Ocean sea-ice extent, productivity and iron flux over the past eight glacial cycles , 2006, Nature.

[75]  David G. Long,et al.  A multidecadal study of the number of Antarctic icebergs using scatterometer data , 2002, IEEE International Geoscience and Remote Sensing Symposium.

[76]  B. Twining,et al.  Free-Drifting Icebergs as Sources of Iron to the Weddell Sea , 2011 .

[77]  R. Gradinger Integrated abundance and biomass of sympagic meiofauna in Arctic and Antarctic pack ice , 1999, Polar Biology.

[78]  David G. Long,et al.  Is the number of Antarctic icebergs really increasing , 2002 .

[79]  S. Jacobs,et al.  Effect of glacial ice melting on the Antarctic Surface Water , 1979, Nature.

[80]  S. Tulaczyk,et al.  Bioavailable iron in the Southern Ocean: the significance of the iceberg conveyor belt , 2008, Geochemical transactions.

[81]  C. Joiris Spring distribution and ecological role of seabirds and marine mammals in the Weddell Sea, Antarctica , 1991, Polar Biology.

[82]  F. Gervais,et al.  Changes in primary productivity and chlorophyll a in response to iron fertilization in the Southern Polar Frontal Zone , 2002 .

[83]  Peter Rothery,et al.  Long-term decline in krill stock and increase in salps within the Southern Ocean , 2004, Nature.

[84]  P. Pepin,et al.  Seasonal patterns in zooplankton community structure on the Newfoundland and Labrador Shelf , 2011 .

[85]  M. Vernet,et al.  Impacts on phytoplankton dynamics by free-drifting icebergs in the NW Weddell Sea , 2011 .

[86]  Andrew J. Watson,et al.  A mesoscale phytoplankton bloom in the polar Southern Ocean stimulated by iron fertilization , 2000, Nature.

[87]  A. Thompson,et al.  journal homepage: www.elsevier.com/locate/dsri , 2022 .

[88]  C. Greene,et al.  Arctic climatechange and its impacts on the ecology of the North Atlantic. , 2008, Ecology.

[89]  J. Schwarz,et al.  Impact of drifting icebergs on surface phytoplankton biomass in the Southern Ocean: Ocean colour remote sensing and in situ iceberg tracking , 2009 .

[90]  H. Hellmer,et al.  Early summer thermohaline characteristics and mixing in the western Weddell Sea , 2008 .

[91]  B. Maher,et al.  Evidence against dust-mediated control of glacial–interglacial changes in atmospheric CO2 , 2001, Nature.

[92]  James L. Fastook,et al.  ICESat profiles of tabular iceberg margins and iceberg breakup at low latitudes , 2005 .

[93]  S. Jacobs,et al.  Thermohaline steps induced by melting of the Erebus Glacier Tongue , 1981 .

[94]  H. G. Gade Melting of Ice in Sea Water: A Primitive Model with Application to the Antarctic Ice Shelf and Icebergs , 1979 .

[95]  M. Vernet,et al.  Cooling, dilution and mixing of ocean water by free-drifting icebergs in the Weddell Sea , 2011 .

[96]  Kenneth L. Smith,et al.  Input, composition, and potential impact of terrigenous material from free-drifting icebergs in the Weddell Sea , 2011 .

[97]  Josefino C. Comiso,et al.  Warming of the Antarctic ice-sheet surface since the 1957 International Geophysical Year , 2009, Nature.

[98]  John H. Martin glacial-interglacial Co2 change : the iron hypothesis , 1990 .

[99]  F. Joos,et al.  Ice core evidence for the extent of past atmospheric CO2 change due to iron fertilisation , 2004 .

[100]  Charles C. Eriksen,et al.  Physical controls and mesoscale variability in the Labrador Sea spring phytoplankton bloom observed by Seaglider , 2009 .

[101]  W. J. Thompson,et al.  Non-biogenic fixed nitrogen in Antarctica and some ecological implications , 1978, Nature.

[102]  S. Westerlund,et al.  Iron in the water column of the Weddell sea , 1991 .

[103]  Gerd Rohardt,et al.  Weddell Sea iceberg drift: Five years of observations , 2006 .

[104]  Jean Tournadre,et al.  Iceberg detection in open water by altimeter waveform analysis. , 2008 .

[105]  S. Stammerjohn,et al.  Western Antarctic Peninsula physical oceanography and spatio-temporal variability , 2008 .

[106]  Kenneth L. Smith,et al.  Free-Drifting Icebergs: Hot Spots of Chemical and Biological Enrichment in the Weddell Sea , 2007, Science.

[107]  D. Vaughan,et al.  Extensive dynamic thinning on the margins of the Greenland and Antarctic ice sheets , 2009, Nature.

[108]  P. Stevenson,et al.  Exploring beneath the PIG Ice Shelf with the Autosub3 AUV , 2009, OCEANS 2009-EUROPE.

[109]  J. Jouzel,et al.  Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica , 1999, Nature.

[110]  H. Hellmer,et al.  Antarctic Ice Sheet melting in the southeast Pacific , 1996 .

[111]  E. Achterberg,et al.  Seabed foraging by Antarctic krill: Implications for stock assessment, bentho‐pelagic coupling, and the vertical transfer of iron , 2011 .

[112]  Kenneth L. Smith,et al.  Lagrangian sediment traps for sampling at discrete depths beneath free-drifting icebergs , 2011 .

[113]  S. El-Sayed Non-biogenic fixed nitrogen in Antarctic surface waters , 1978, Nature.

[114]  Frederick Armstrong,et al.  Antarctic Krill Under Sea Ice: Elevated Abundance in a Narrow Band Just South of Ice Edge , 2002, Science.

[115]  P. Sedwick,et al.  Iron and Manganese in the Ross Sea, Antarctica: Seasonal Iron Limitation in Antarctic Shelf Waters , 2000 .

[116]  D. Vaughan,et al.  Devil in the Detail , 2001, Science.

[117]  R. Harris,et al.  Mesoscale physical variability affects zooplankton production in the Labrador Sea , 2009 .

[118]  H. Huppert,et al.  Ice blocks melting into a salinity gradient , 1980, Journal of Fluid Mechanics.

[119]  Duncan J. Wingham,et al.  Spatial and temporal evolution of Pine Island Glacier thinning , 2009 .

[120]  Pedro Skvarca,et al.  Glacier Surge After Ice Shelf Collapse , 2003, Science.

[121]  A. Watson,et al.  Vertical eddy diffusion and nutrient supply to the surface mixed layer of the Antarctic Circumpolar Current , 2003 .

[122]  Jack L. Saba,et al.  Mass changes of the Greenland and Antarctic ice sheets and shelves and contributions to sea-level rise: 1992-2002 , 2005 .