Stochastic algorithms in electromagnetic optimization

This paper gives an overview of some stochastic optimization strategies, namely, evolution strategies, genetic algorithms, and simulated annealing, and how these methods can be applied to problems in electrical engineering. Since these methods usually require a careful tuning of the parameters which control the behavior of the strategies (strategy parameters), significant features of the algorithms implemented by the authors are presented. An analytical comparison among them is performed. Finally, results are discussed on three optimization problems.

[1]  Thomas Bäck,et al.  An Overview of Evolutionary Algorithms for Parameter Optimization , 1993, Evolutionary Computation.

[2]  G. Molinari,et al.  A package for computer aided design for power electrical engineering , 1983 .

[3]  J. Simkin,et al.  Automated optimization of magnet design using the boundary integral method , 1982 .

[4]  C. D. Gelatt,et al.  Optimization by Simulated Annealing , 1983, Science.

[5]  M. Repetto,et al.  A combined strategy for optimization in nonlinear magnetic problems using simulated annealing and search techniques , 1992 .

[6]  Steven G. Louie,et al.  A Monte carlo simulated annealing approach to optimization over continuous variables , 1984 .

[7]  Sandro Ridella,et al.  Minimizing multimodal functions of continuous variables with the “simulated annealing” algorithmCorrigenda for this article is available here , 1987, TOMS.

[8]  M. Repetto,et al.  Multiobjective optimization in magnetostatics: a proposal for benchmark problems , 1996 .

[9]  C. Magele,et al.  Global optimization methods for computational electromagnetics , 1992 .

[10]  Bruce E. Hajek,et al.  Cooling Schedules for Optimal Annealing , 1988, Math. Oper. Res..

[11]  Zbigniew Michalewicz,et al.  Genetic Algorithms + Data Structures = Evolution Programs , 1996, Springer Berlin Heidelberg.

[12]  Philip E. Gill,et al.  Practical optimization , 1981 .

[13]  M. Repetto,et al.  A multiquadrics-based algorithm for the acceleration of simulated annealing optimization procedures , 1996 .

[14]  J. L. Coulomb,et al.  High derivatives for fast sensitivity analysis in linear magnetodynamics , 1997 .

[15]  W. Press,et al.  Numerical Recipes in Fortran: The Art of Scientific Computing.@@@Numerical Recipes in C: The Art of Scientific Computing. , 1994 .

[16]  M. Repetto,et al.  A parallel simulated annealing algorithm for the design of magnetic structures , 1994 .

[17]  A. Infortuna,et al.  Preisach model study of the connection between magnetic and microstructural properties of soft magnetic materials , 1995 .

[18]  S. Ratnajeevan,et al.  Optimal design, inverse problems and parallel computers , 1990, International Conference on Magnetics.

[19]  F. G. Uler,et al.  Design optimization of electromagnetic devices using artificial neural networks , 1992, 1992. Digests of Intermag. International Magnetics Conference.

[20]  N. Takahashi,et al.  Optimal design method of 3-D nonlinear magnetic circuit by using magnetization integral equation method , 1989, International Magnetics Conference.

[21]  Donald Geman,et al.  Stochastic Relaxation, Gibbs Distributions, and the Bayesian Restoration of Images , 1984, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[22]  C. Magele,et al.  FEM and evolution strategies in the optimal design of electromagnetic devices , 1990, International Conference on Magnetics.

[23]  Bernhard Brandstätter,et al.  Utilizing feedforward neural networks for acceleration of global optimization procedures [SMES problems] , 1998 .

[24]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[25]  V. Cerný Thermodynamical approach to the traveling salesman problem: An efficient simulation algorithm , 1985 .

[26]  S. Russenschuck,et al.  Mathematical optimization techniques for the design of permanent magnet synchronous machines based on numerical field calculation , 1990 .

[27]  N. Metropolis,et al.  Equation of State Calculations by Fast Computing Machines , 1953, Resonance.

[28]  Norio Takahashi,et al.  Examination of optimal design method using die press model (problem 25) , 1998 .

[29]  R. H. J. M. Otten,et al.  The Annealing Algorithm , 1989 .

[30]  John H. Holland,et al.  Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence , 1992 .

[31]  R. Fletcher Practical Methods of Optimization , 1988 .

[32]  Emile H. L. Aarts,et al.  Simulated Annealing: Theory and Applications , 1987, Mathematics and Its Applications.

[33]  H. P. Schwefel,et al.  Numerische Optimierung von Computermodellen mittels der Evo-lutionsstrategie , 1977 .

[34]  S. Gitosusastro,et al.  Performance derivative calculations and optimization process , 1989 .

[35]  Joachim Stender,et al.  Parallel Genetic Algorithms: Introduction and Overview of Current Research , 1993 .