Signal integration enhances the dynamic range in neuronal systems.

The dynamic range measures the capacity of a system to discriminate the intensity of an external stimulus. Such an ability is fundamental for living beings to survive: to leverage resources and to avoid danger. Consequently, the larger is the dynamic range, the greater is the probability of survival. We investigate how the integration of different input signals affects the dynamic range, and in general the collective behavior of a network of excitable units. By means of numerical simulations and a mean-field approach, we explore the nonequilibrium phase transition in the presence of integration. We show that the firing rate in random and scale-free networks undergoes a discontinuous phase transition depending on both the integration time and the density of integrator units. Moreover, in the presence of external stimuli, we find that a system of excitable integrator units operating in a bistable regime largely enhances its dynamic range.

[1]  Woodrow L. Shew,et al.  Predicting criticality and dynamic range in complex networks: effects of topology. , 2010, Physical review letters.

[2]  R. Friedrich,et al.  Combinatorial and Chemotopic Odorant Coding in the Zebrafish Olfactory Bulb Visualized by Optical Imaging , 1997, Neuron.

[3]  Woodrow L. Shew,et al.  Neuronal Avalanches Imply Maximum Dynamic Range in Cortical Networks at Criticality , 2009, The Journal of Neuroscience.

[4]  W. Marsden I and J , 2012 .

[5]  M. Steriade,et al.  A novel slow (< 1 Hz) oscillation of neocortical neurons in vivo: depolarizing and hyperpolarizing components , 1993, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[6]  D. Wilkin,et al.  Neuron , 2001, Brain Research.

[7]  Stefan Mihalas,et al.  Self-organized criticality occurs in non-conservative neuronal networks during Up states , 2010, Nature physics.

[8]  K. Abbink,et al.  24 , 1871, You Can Cross the Massacre on Foot.

[9]  Xin-Jian Xu,et al.  Excitable Greenberg-Hastings cellular automaton model on scale-free networks. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[10]  Albert-László Barabási,et al.  Statistical mechanics of complex networks , 2001, ArXiv.

[11]  J. Spencer,et al.  Explosive Percolation in Random Networks , 2009, Science.

[12]  Jordi Soriano,et al.  Percolation in living neural networks. , 2006, Physical review letters.

[13]  Peter Sheridan Dodds,et al.  Universal behavior in a generalized model of contagion. , 2004, Physical review letters.

[14]  John M. Beggs,et al.  Behavioral / Systems / Cognitive Neuronal Avalanches Are Diverse and Precise Activity Patterns That Are Stable for Many Hours in Cortical Slice Cultures , 2004 .

[15]  D. Plenz,et al.  The organizing principles of neuronal avalanches: cell assemblies in the cortex? , 2007, Trends in Neurosciences.

[16]  Gerhard Werner,et al.  Fractals in the Nervous System: Conceptual Implications for Theoretical Neuroscience , 2009, Front. Physiology.

[17]  John M Beggs,et al.  Critical branching captures activity in living neural networks and maximizes the number of metastable States. , 2005, Physical review letters.

[18]  Dante R. Chialvo Critical brain networks , 2004 .

[19]  Robert A. Legenstein,et al.  2007 Special Issue: Edge of chaos and prediction of computational performance for neural circuit models , 2007 .

[20]  G. E. Alexander,et al.  Neuron Activity Related to Short-Term Memory , 1971, Science.

[21]  M. A. Muñoz,et al.  Self-organization without conservation: are neuronal avalanches generically critical? , 2010, 1001.3256.

[22]  John M. Beggs,et al.  Neuronal Avalanches in Neocortical Circuits , 2003, The Journal of Neuroscience.

[23]  A. Reyes,et al.  Influence of dendritic conductances on the input-output properties of neurons. , 2001, Annual review of neuroscience.

[24]  D. Chialvo,et al.  Ising-like dynamics in large-scale functional brain networks. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[25]  Mauro Copelli,et al.  Discontinuous nonequilibrium phase transitions in a nonlinearly pulse-coupled excitable lattice model. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[26]  Leonardo L. Gollo,et al.  Active Dendrites Enhance Neuronal Dynamic Range , 2009, PLoS Comput. Biol..

[27]  D. Chialvo Emergent complex neural dynamics , 2010, 1010.2530.

[28]  Mauro Copelli,et al.  Dynamic range of hypercubic stochastic excitable media. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[29]  Jordi Soriano,et al.  Quorum percolation in living neural networks , 2010, 1007.5143.

[30]  David Hsu,et al.  Neuronal avalanches and criticality: A dynamical model for homeostasis , 2006, Neurocomputing.

[31]  Mauro Copelli,et al.  Response of electrically coupled spiking neurons: a cellular automaton approach. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[32]  J. Magee Dendritic integration of excitatory synaptic input , 2000, Nature Reviews Neuroscience.

[33]  Barbara Drossel,et al.  The phase diagram of random threshold networks , 2008, 0807.0429.

[34]  N. Spruston Pyramidal neurons: dendritic structure and synaptic integration , 2008, Nature Reviews Neuroscience.

[35]  A. Hudspeth,et al.  Essential nonlinearities in hearing. , 2000, Physical review letters.

[37]  Damon Centola,et al.  The Spread of Behavior in an Online Social Network Experiment , 2010, Science.

[38]  D. Signorini,et al.  Neural networks , 1995, The Lancet.

[39]  L. Cohen,et al.  Representation of Odorants by Receptor Neuron Input to the Mouse Olfactory Bulb , 2001, Neuron.

[40]  B. M. Fulk MATH , 1992 .

[41]  M. Copelli,et al.  Excitable scale free networks , 2007, q-bio/0703004.

[42]  Edward T. Bullmore,et al.  Broadband Criticality of Human Brain Network Synchronization , 2009, PLoS Comput. Biol..

[43]  W. Cowan,et al.  Annual Review of Neuroscience , 1995 .

[44]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[45]  Mark S. Granovetter Threshold Models of Collective Behavior , 1978, American Journal of Sociology.

[46]  S. Hastings,et al.  Spatial Patterns for Discrete Models of Diffusion in Excitable Media , 1978 .

[47]  O. Kinouchi,et al.  Optimal dynamical range of excitable networks at criticality , 2006, q-bio/0601037.

[48]  J. M. Herrmann,et al.  Phase transitions towards criticality in a neural system with adaptive interactions. , 2009, Physical review letters.

[49]  F. Jülicher,et al.  Auditory sensitivity provided by self-tuned critical oscillations of hair cells. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[50]  Celso Grebogi,et al.  International Journal of Bifurcation and Chaos: Editorial , 2008 .

[51]  Shawn R. Olsen,et al.  Sensory processing in the Drosophila antennal lobe increases reliability and separability of ensemble odor representations , 2007, Nature Neuroscience.

[52]  Duncan J Watts,et al.  A simple model of global cascades on random networks , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[53]  J. M. Herrmann,et al.  Dynamical synapses causing self-organized criticality in neural networks , 2007, 0712.1003.

[54]  John M Beggs,et al.  The criticality hypothesis: how local cortical networks might optimize information processing , 2008, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[55]  Leonardo L. Gollo,et al.  Statistical physics approach to dendritic computation: the excitable-wave mean-field approximation. , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.

[56]  Spain,et al.  Cascade Dynamics of Complex Propagation , 2005, physics/0504165.