Room Temperature O-band DFB Laser Array Directly Grown on (001) Silicon.

Several approaches for growing III-V lasers on silicon were recently demonstrated. Most are not compatible with further integration, however, and rely on thick buffer layers and require special substrates. Recently, we demonstrated a novel approach for growing high quality InP without buffer on standard 001-silicon substrates using a selective growth process compatible with integration. Here we show high quality InGaAs layers can be grown on these InP-templates. High-resolution TEM analysis shows these layers are free of optically active defects. Contrary to InP, the InGaAs material exhibits strong photoluminescence for wavelengths relevant for integration with silicon photonics integrated circuits. Distributed feedback lasers were defined by etching a first order grating in the top surface of the device. Clear laser operation at a single wavelength with strong suppression of side modes was demonstrated. Compared to the previously demonstrated InP lasers 65% threshold reduction is observed. Demonstration of laser arrays with linearly increasing wavelength prove the control of the process and the high quality of the material. This is an important result toward realizing fully integrated photonic ICs on silicon substrates.

[1]  G. O. Dias,et al.  Valence-band splitting energies in wurtzite InP nanowires: Photoluminescence spectroscopy and ab initio calculations , 2010 .

[2]  Kei May Lau,et al.  Optically pumped 1.3  μm room-temperature InAs quantum-dot micro-disk lasers directly grown on (001) silicon. , 2016, Optics letters.

[3]  M. Paniccia,et al.  A continuous-wave Raman silicon laser , 2005, Nature.

[4]  V. Narayanan,et al.  Antiphase boundaries in GaP layers grown on (001) Si by chemical beam epitaxy , 2002 .

[5]  O. Richard,et al.  Selective Area Growth of InP in Shallow-Trench-Isolated Structures on Off-Axis Si(001) Substrates , 2010 .

[6]  Niamh Waldron,et al.  (Invited) Selective-Area Metal Organic Vapor-Phase Epitaxy of III-V on Si: What About Defect Density? , 2014 .

[7]  K. Barla,et al.  Heteroepitaxy of InP on Si(001) by selective-area metal organic vapor-phase epitaxy in sub-50 nm width trenches: The role of the nucleation layer and the recess engineering , 2014 .

[8]  H. C. Casey,et al.  Evidence for low surface recombination velocity on n‐type InP , 1977 .

[9]  応用物理学会 1995 Symposium on VLSI Technology. Digest of Technical Papers , 1995, 1995 Symposium on VLSI Technology. Digest of Technical Papers.

[10]  Eric Tournié,et al.  Continuous-wave operation above room temperature of GaSb-based laser diodes grown on Si , 2011 .

[11]  Charles M. Lieber,et al.  Single-nanowire electrically driven lasers , 2003, Nature.

[12]  L. Coldren,et al.  Diode Lasers and Photonic Integrated Circuits , 1995 .

[13]  Niamh Waldron,et al.  InGaAs Gate-All-Around Nanowire Devices on 300mm Si Substrates , 2014, IEEE Electron Device Letters.

[14]  Niamh Waldron,et al.  Selective metal-organic chemical vapor deposition growth of high quality GaAs on Si(001) , 2014 .

[15]  Yoshitaka Inui,et al.  A micrometre-scale Raman silicon laser with a microwatt threshold , 2013, Nature.

[16]  A. Seeds,et al.  Optimizations of Defect Filter Layers for 1.3-μm InAs/GaAs Quantum-Dot Lasers Monolithically Grown on Si Substrates , 2011, IEEE Journal of Selected Topics in Quantum Electronics.

[17]  J. Alamo Nanometre-scale electronics with III–V compound semiconductors , 2011, Nature.

[18]  C. Merckling,et al.  Polytypic InP nanolaser monolithically integrated on (001) silicon. , 2013, Nano letters.

[19]  Cary Gunn,et al.  CMOS Photonics for High-Speed Interconnects , 2006, IEEE Micro.

[20]  R. L. Barns,et al.  Band gap versus composition and demonstration of Vegard’s law for In1−xGaxAsyP1−y lattice matched to InP , 1978 .

[21]  M. Paniccia,et al.  A high-speed silicon optical modulator based on a metal–oxide–semiconductor capacitor , 2004, Nature.

[22]  Eric Tournié,et al.  Metamorphic III–V semiconductor lasers grown on silicon , 2016 .

[23]  Richard A. Hogg,et al.  Long-wavelength InAs/GaAs quantum-dot laser diode monolithically grown on Ge substrate , 2011 .

[24]  M. Heiss,et al.  Determination of the band gap and the split-off band in wurtzite GaAs using Raman and photoluminescence excitation spectroscopy , 2011 .

[25]  Qianfan Xu,et al.  Micrometre-scale silicon electro-optic modulator , 2005, Nature.

[26]  Bin Tian,et al.  Room-temperature InP distributed feedback laser array directly grown on silicon , 2015 .

[27]  R Baets,et al.  Electrically pumped InP-based microdisk lasers integrated with a nanophotonic silicon-on-insulator waveguide circuit. , 2007, Optics express.

[28]  J. Michel,et al.  High-performance Ge-on-Si photodetectors , 2010 .

[29]  J. Bowers,et al.  Electrically pumped hybrid AlGaInAs-silicon evanescent laser. , 2006, Optics express.

[30]  T. Koch,et al.  Nature of wavelength chirping in directly modulated semiconductor lasers , 1984 .

[31]  David A. B. Miller,et al.  Device Requirements for Optical Interconnects to Silicon Chips , 2009, Proceedings of the IEEE.

[32]  Pallab Bhattacharya,et al.  Integration of epitaxially-grown InGaAs/GaAs quantum dot lasers with hydrogenated amorphous silicon waveguides on silicon. , 2008, Optics express.

[33]  O. Richard,et al.  Site Selective Integration of III–V Materials on Si for Nanoscale Logic and Photonic Devices , 2012 .

[34]  Sunao Torii,et al.  On-Chip Optical Interconnect , 2009, Proceedings of the IEEE.

[35]  J. Michel,et al.  Ge-on-Si laser operating at room temperature. , 2010, Optics letters.

[36]  Connie Chang-Hasnain,et al.  Nanolasers Grown on Silicon , 2011, 1101.3305.

[37]  Eli Yablonovitch,et al.  Surface Recombination Measurements on III-V Candidate Materials for Nanostructure Light-Emitting Diodes , 2000 .

[38]  R. Soref,et al.  The Past, Present, and Future of Silicon Photonics , 2006, IEEE Journal of Selected Topics in Quantum Electronics.

[39]  Wei Li,et al.  Electrically pumped continuous-wave III–V quantum dot lasers on silicon , 2016, Nature Photonics.

[40]  J. Faist,et al.  Lasing in direct-bandgap GeSn alloy grown on Si , 2015, Nature Photonics.

[41]  F. Xia,et al.  Reinventing germanium avalanche photodetector for nanophotonic on-chip optical interconnects , 2010, Nature.

[42]  C. B. Carter,et al.  Structure of the (110) antiphase boundary in gallium phosphide , 2002, Journal of microscopy.

[43]  Geert Morthier,et al.  An ultra-small, low power all-optical flip-flop memory on a silicon chip , 2010 .

[44]  C. Merckling,et al.  An InGaAs/InP quantum well finfet using the replacement fin process integrated in an RMG flow on 300mm Si substrates , 2014, 2014 Symposium on VLSI Technology (VLSI-Technology): Digest of Technical Papers.