Room Temperature O-band DFB Laser Array Directly Grown on (001) Silicon.
暂无分享,去创建一个
Bin Tian | Joris Van Campenhout | Clement Merckling | Dries Van Thourhout | Marianna Pantouvaki | Philippe Absil | C. Merckling | P. Absil | J. Van Campenhout | D. van Thourhout | B. Tian | Zhechao Wang | M. Pantouvaki | Zhechao Wang
[1] G. O. Dias,et al. Valence-band splitting energies in wurtzite InP nanowires: Photoluminescence spectroscopy and ab initio calculations , 2010 .
[2] Kei May Lau,et al. Optically pumped 1.3 μm room-temperature InAs quantum-dot micro-disk lasers directly grown on (001) silicon. , 2016, Optics letters.
[3] M. Paniccia,et al. A continuous-wave Raman silicon laser , 2005, Nature.
[4] V. Narayanan,et al. Antiphase boundaries in GaP layers grown on (001) Si by chemical beam epitaxy , 2002 .
[5] O. Richard,et al. Selective Area Growth of InP in Shallow-Trench-Isolated Structures on Off-Axis Si(001) Substrates , 2010 .
[6] Niamh Waldron,et al. (Invited) Selective-Area Metal Organic Vapor-Phase Epitaxy of III-V on Si: What About Defect Density? , 2014 .
[7] K. Barla,et al. Heteroepitaxy of InP on Si(001) by selective-area metal organic vapor-phase epitaxy in sub-50 nm width trenches: The role of the nucleation layer and the recess engineering , 2014 .
[8] H. C. Casey,et al. Evidence for low surface recombination velocity on n‐type InP , 1977 .
[9] 応用物理学会. 1995 Symposium on VLSI Technology. Digest of Technical Papers , 1995, 1995 Symposium on VLSI Technology. Digest of Technical Papers.
[10] Eric Tournié,et al. Continuous-wave operation above room temperature of GaSb-based laser diodes grown on Si , 2011 .
[11] Charles M. Lieber,et al. Single-nanowire electrically driven lasers , 2003, Nature.
[12] L. Coldren,et al. Diode Lasers and Photonic Integrated Circuits , 1995 .
[13] Niamh Waldron,et al. InGaAs Gate-All-Around Nanowire Devices on 300mm Si Substrates , 2014, IEEE Electron Device Letters.
[14] Niamh Waldron,et al. Selective metal-organic chemical vapor deposition growth of high quality GaAs on Si(001) , 2014 .
[15] Yoshitaka Inui,et al. A micrometre-scale Raman silicon laser with a microwatt threshold , 2013, Nature.
[16] A. Seeds,et al. Optimizations of Defect Filter Layers for 1.3-μm InAs/GaAs Quantum-Dot Lasers Monolithically Grown on Si Substrates , 2011, IEEE Journal of Selected Topics in Quantum Electronics.
[17] J. Alamo. Nanometre-scale electronics with III–V compound semiconductors , 2011, Nature.
[18] C. Merckling,et al. Polytypic InP nanolaser monolithically integrated on (001) silicon. , 2013, Nano letters.
[19] Cary Gunn,et al. CMOS Photonics for High-Speed Interconnects , 2006, IEEE Micro.
[20] R. L. Barns,et al. Band gap versus composition and demonstration of Vegard’s law for In1−xGaxAsyP1−y lattice matched to InP , 1978 .
[21] M. Paniccia,et al. A high-speed silicon optical modulator based on a metal–oxide–semiconductor capacitor , 2004, Nature.
[22] Eric Tournié,et al. Metamorphic III–V semiconductor lasers grown on silicon , 2016 .
[23] Richard A. Hogg,et al. Long-wavelength InAs/GaAs quantum-dot laser diode monolithically grown on Ge substrate , 2011 .
[24] M. Heiss,et al. Determination of the band gap and the split-off band in wurtzite GaAs using Raman and photoluminescence excitation spectroscopy , 2011 .
[25] Qianfan Xu,et al. Micrometre-scale silicon electro-optic modulator , 2005, Nature.
[26] Bin Tian,et al. Room-temperature InP distributed feedback laser array directly grown on silicon , 2015 .
[27] R Baets,et al. Electrically pumped InP-based microdisk lasers integrated with a nanophotonic silicon-on-insulator waveguide circuit. , 2007, Optics express.
[28] J. Michel,et al. High-performance Ge-on-Si photodetectors , 2010 .
[29] J. Bowers,et al. Electrically pumped hybrid AlGaInAs-silicon evanescent laser. , 2006, Optics express.
[30] T. Koch,et al. Nature of wavelength chirping in directly modulated semiconductor lasers , 1984 .
[31] David A. B. Miller,et al. Device Requirements for Optical Interconnects to Silicon Chips , 2009, Proceedings of the IEEE.
[32] Pallab Bhattacharya,et al. Integration of epitaxially-grown InGaAs/GaAs quantum dot lasers with hydrogenated amorphous silicon waveguides on silicon. , 2008, Optics express.
[33] O. Richard,et al. Site Selective Integration of III–V Materials on Si for Nanoscale Logic and Photonic Devices , 2012 .
[34] Sunao Torii,et al. On-Chip Optical Interconnect , 2009, Proceedings of the IEEE.
[35] J. Michel,et al. Ge-on-Si laser operating at room temperature. , 2010, Optics letters.
[36] Connie Chang-Hasnain,et al. Nanolasers Grown on Silicon , 2011, 1101.3305.
[37] Eli Yablonovitch,et al. Surface Recombination Measurements on III-V Candidate Materials for Nanostructure Light-Emitting Diodes , 2000 .
[38] R. Soref,et al. The Past, Present, and Future of Silicon Photonics , 2006, IEEE Journal of Selected Topics in Quantum Electronics.
[39] Wei Li,et al. Electrically pumped continuous-wave III–V quantum dot lasers on silicon , 2016, Nature Photonics.
[40] J. Faist,et al. Lasing in direct-bandgap GeSn alloy grown on Si , 2015, Nature Photonics.
[41] F. Xia,et al. Reinventing germanium avalanche photodetector for nanophotonic on-chip optical interconnects , 2010, Nature.
[42] C. B. Carter,et al. Structure of the (110) antiphase boundary in gallium phosphide , 2002, Journal of microscopy.
[43] Geert Morthier,et al. An ultra-small, low power all-optical flip-flop memory on a silicon chip , 2010 .
[44] C. Merckling,et al. An InGaAs/InP quantum well finfet using the replacement fin process integrated in an RMG flow on 300mm Si substrates , 2014, 2014 Symposium on VLSI Technology (VLSI-Technology): Digest of Technical Papers.