On The Use Of Second- And Higher-order Inverse Statistics

Inverse higher-order statistics of non-Gaussian, stationary random processes are introduced in this paper, as an extension of their 2nd- order counterparts, known as inverse correlations. Their use in system identification, and specifically in model order determination and parameter estimation problems, is investigated. Estimation procedures are proposed for obtaining sample estimates of inverse statistics and the corresponding (poly)spectra. The algorithms derived are illustrated by simulation examples, involving inverse 2nd- and 3rd-order statistics.

[1]  Chrysostomos L. Nikias,et al.  Non-casual autoregressive bispectrum estimation and deconvolution , 1987, ICASSP '87. IEEE International Conference on Acoustics, Speech, and Signal Processing.

[2]  R. J. Bhansali,et al.  Autoregressive and window estimates of the inverse correlation function , 1980 .

[3]  Ananthram Swami,et al.  ON ESTIMATING NON-CAUSAL ARMA NON-GAUSSIAN PROCESSES , 1988 .

[4]  William S. Cleveland,et al.  The Inverse Autocorrelations of a Time Series and Their Applications , 1972 .

[5]  T.J. Ulrych,et al.  Phase estimation using the bispectrum , 1984, Proceedings of the IEEE.

[6]  M.R. Raghuveer,et al.  Bispectrum estimation: A digital signal processing framework , 1987, Proceedings of the IEEE.

[7]  B. Friedlander,et al.  Optimal estimates of MA and ARMA parameters of non-Gaussian processes from high-order cumulants , 1988, Fourth Annual ASSP Workshop on Spectrum Estimation and Modeling.

[8]  Jerry M. Mendel,et al.  Identification of nonminimum phase systems using higher order statistics , 1989, IEEE Trans. Acoust. Speech Signal Process..

[9]  Georgios B. Giannakis,et al.  Signal reconstruction from multiple correlations: frequency- and time-domain approaches , 1989 .

[10]  Chrysostomos L. Nikias,et al.  Higher-order spectrum estimation via noncausal autoregressive modeling and deconvolution , 1988, IEEE Trans. Acoust. Speech Signal Process..

[11]  E. Parzen Some recent advances in time series modeling , 1974 .

[12]  M. Rosenblatt,et al.  Deconvolution and Estimation of Transfer Function Phase and Coefficients for NonGaussian Linear Processes. , 1982 .

[13]  G. Giannakis,et al.  On estimating noncasual ARMA nonGaussian processes , 1988, Fourth Annual ASSP Workshop on Spectrum Estimation and Modeling.

[14]  Francesco Battaglia,et al.  On the estimation of the inverse correlation function , 1988 .

[15]  R. J. Bhansali,et al.  ESTIMATION OF THE ORDER OF A MOVING AVERAGE MODEL FROM AUTOREGRESSIVE AND WINDOW ESTIMATES OF THE INVERSE CORRELATION FUNCTION , 1983 .

[16]  Georgios B. Giannakis,et al.  Wavelet parameter and phase estimation using cumulant slices , 1989 .