Legendre--Gauss collocation method for initial value problems of second order ordinary differential equations

In this paper, we develop a new collocation method for solving initial value problems of second order ODEs. We approximate the solutions by the Legendre-Gauss interpolation directly. The numerical solutions possess the spectral accuracy. We also propose a multi-step version of Legendre-Gauss collocation method, which works well for long-time calculations. Numerical results demonstrate the effectiveness of proposed methods and coincide well with analysis.

[1]  Ben-yu Guo,et al.  Legendre–Gauss collocation methods for ordinary differential equations , 2009, Adv. Comput. Math..

[2]  T. E. Simos,et al.  ON THE CONSTRUCTION OF EFFICIENT METHODS FOR SECOND ORDER IVPS WITH OSCILLATING SOLUTION , 2001 .

[3]  George Papageorgiou,et al.  A P-stable singly diagonally implicit Runge–Kutta–Nyström method , 1998, Numerical Algorithms.

[4]  H. M. El-Hawary,et al.  On some 4-point spline collocation methods for solving second-order initial value problems , 2001 .

[5]  Guo Ben-yu,et al.  Jacobi interpolation approximations and their applications to singular differential equations , 2001 .

[6]  E. Hairer,et al.  A theory for Nyström methods , 1975 .

[7]  Guo Ben-yu,et al.  Numerical integration based on Laguerre-Gauss interpolation , 2007 .

[8]  W. Gautschi Numerical integration of ordinary differential equations based on trigonometric polynomials , 1961 .

[9]  Theodore E. Simos,et al.  Exponentially-fitted Runge-Kutta-Nystro"m method for the numerical solution of initial-value problems with oscillating solutions , 2002, Appl. Math. Lett..

[10]  Nguyen Huu Cong,et al.  Parallel diagonally implicit Runge-Kutta-Nystro¨m methods , 1992 .

[11]  M. Anwar,et al.  Quintic C 2 -spline integration initial value equation problems , 2000 .

[12]  T. E. Simos,et al.  Symmetric Eighth Algebraic Order Methods with Minimal Phase-Lag for the Numerical Solution of the Schrödinger Equation , 2002 .

[13]  Moawwad E. A. El-Mikkawy,et al.  High-Order Embedded Runge-Kutta-Nystrom Formulae , 1987 .

[14]  J. Lambert,et al.  Symmetric Multistip Methods for Periodic Initial Value Problems , 1976 .

[15]  E. Hairer Unconditionally stable methods for second order differential equations , 1979 .

[16]  J. M. Franco Runge–Kutta–Nyström methods adapted to the numerical integration of perturbed oscillators , 2002 .

[17]  Higinio Ramos,et al.  Dissipative Chebyshev exponential-fitted methods for numerical solution of second-order differential equations , 2003 .

[18]  Jeff Cash High orderP-stable formulae for the numerical integration of periodic initial value problems , 1981 .

[19]  T. E. Simos,et al.  A P-Stable Eighth-Order Method for the Numerical Integration of Periodic Initial-Value Problems , 1997 .

[20]  An exponentially-fitted and trigonometrically-fitted method for the numerical solution of periodic initial-value problems☆ , 2003 .

[21]  Higinio Ramos,et al.  Variable stepsize störmer-cowell methods , 2005, Math. Comput. Model..

[22]  Leon O. Chua,et al.  Linear and nonlinear circuits , 1987 .

[23]  Tom E. Simos,et al.  A NEW MODIFIED RUNGE–KUTTA–NYSTRÖM METHOD WITH PHASE-LAG OF ORDER INFINITY FOR THE NUMERICAL SOLUTION OF THE SCHRÖDINGER EQUATION AND RELATED PROBLEMS , 2000 .

[24]  T. E. Simos,et al.  Controlling the error growth in long–term numerical integration of perturbed oscillations in one or several frequencies , 2004, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[25]  L. Kramarz Stability of collocation methods for the numerical solution ofy″=f (x,y) , 1980 .

[26]  H. Meyer,et al.  On the generation of mono-implicit Runge-Kutta-Nystro¨m methods by mono-implicit Runge-Kutta methods , 1997 .

[28]  John P. Coleman,et al.  Mixed collocation methods for y ′′ =f x,y , 2000 .

[29]  John P. Coleman Numerical Methods for y″ =f(x, y) via Rational Approximations for the Cosine , 1989 .

[30]  Erwin Fehlberg,et al.  Klassische Runge-Kutta-Nyström-Formeln mit Schrittweiten-Kontrolle für Differentialgleichungen $$\ddot x = f(t,x,\dot x)$$ , 1972, Computing.

[31]  C. Hsu,et al.  Cell-To-Cell Mapping A Method of Global Analysis for Nonlinear Systems , 1987 .

[32]  Luis Rández,et al.  Four-stage symplectic and P-stable SDIRKN methods with dispersion of high order , 2004, Numerical Algorithms.

[33]  D. G. Bettis,et al.  Stabilization of Cowell's method , 1969 .

[34]  E. Fehlberg,et al.  Classical eight- and lower-order Runge-Kutta-Nystroem formulas with stepsize control for special second-order differential equations , 1972 .

[35]  M. Chawla,et al.  Singly-implicit stabilized extended one-step methods for second-order initial-value problems with oscillating solutions , 1999 .

[36]  Ben-yu Guo,et al.  Jacobi approximations in non-uniformly Jacobi-weighted Sobolev spaces , 2004, J. Approx. Theory.

[37]  J. B. Chabi Orou,et al.  Dynamics of a nonlinear electromechanical system with multiple functions in series , 2005 .

[38]  V. M. Falkner L.A method of numerical solution of differential equations , 1936 .

[39]  Higinio Ramos,et al.  A family of A-stable Runge–Kutta collocation methods of higher order for initial-value problems , 2007 .

[40]  Ben P. Sommeijer,et al.  Diagonally implicit Runge-Kutta-Nystrm methods for oscillatory problems , 1989 .

[41]  M. M. Chawla,et al.  High-accuracy P-stable Methods for y″ = f(t, y) , 1985 .

[42]  J. Vigo-Aguiar,et al.  Variable stepsize implementation of multistep methods for y' ' = f ( x, y, y' ) , 2006 .

[43]  J. B. Chabi Orou,et al.  Nonlinear dynamics and synchronization of coupled electromechanical systems with multiple functions , 2007 .

[44]  I. Famelis,et al.  Continuous Runge-Kutta-Nyström methods for initial value problems with periodic solutions , 2001 .

[45]  José-Miguel Farto,et al.  An algorithm for the systematic construction of solutions to perturbed problems , 1998 .

[46]  Zhongcheng Wang P-stable linear symmetric multistep methods for periodic initial-value problems , 2005, Comput. Phys. Commun..

[47]  Tom E. Simos An explicit almost P-stable two-step method with phase-lag of order infinity for the numerical integration of second-order pacific initial-value problems , 1992 .

[48]  J. Lambert Numerical Methods for Ordinary Differential Systems: The Initial Value Problem , 1991 .

[49]  Theodore E. Simos,et al.  On Finite Difference Methods for the Solution of the Schrödinger Equation , 1999, Comput. Chem..

[50]  Ben-yu Guo,et al.  Integration processes of ordinary differential equations based on Laguerre-Radau interpolations , 2008, Math. Comput..