Sparse Gaussian Process Regression via L1 Penalization
暂无分享,去创建一个
[1] Ivor W. Tsang,et al. Improved Nyström low-rank approximation and error analysis , 2008, ICML '08.
[2] Matthias W. Seeger,et al. Using the Nyström Method to Speed Up Kernel Machines , 2000, NIPS.
[3] Katya Scheinberg,et al. Efficient SVM Training Using Low-Rank Kernel Representations , 2002, J. Mach. Learn. Res..
[4] R. Tibshirani,et al. Least angle regression , 2004, math/0406456.
[5] Yuan Qi,et al. Predictive automatic relevance determination by expectation propagation , 2004, ICML.
[6] Carl E. Rasmussen,et al. Gaussian processes for machine learning , 2005, Adaptive computation and machine learning.
[7] Bernhard Schölkopf,et al. A Generalized Representer Theorem , 2001, COLT/EuroCOLT.
[8] T. Minka. Power EP , 2004 .
[9] H. Zou,et al. Regularization and variable selection via the elastic net , 2005 .
[10] Michalis K. Titsias,et al. Variational Learning of Inducing Variables in Sparse Gaussian Processes , 2009, AISTATS.
[11] Zoubin Ghahramani,et al. Sparse Gaussian Processes using Pseudo-inputs , 2005, NIPS.
[12] L. Csató. Gaussian processes:iterative sparse approximations , 2002 .
[13] Bernhard Schölkopf,et al. Sparse multiscale gaussian process regression , 2008, ICML '08.
[14] Carl E. Rasmussen,et al. A Unifying View of Sparse Approximate Gaussian Process Regression , 2005, J. Mach. Learn. Res..
[15] Alexander J. Smola,et al. Sparse Greedy Gaussian Process Regression , 2000, NIPS.
[16] T Poggio,et al. Regularization Algorithms for Learning That Are Equivalent to Multilayer Networks , 1990, Science.
[17] Neil D. Lawrence,et al. Fast Forward Selection to Speed Up Sparse Gaussian Process Regression , 2003, AISTATS.
[18] Wei Chu,et al. A matching pursuit approach to sparse Gaussian process regression , 2005, NIPS.