Hidden Symmetries and Spectrum of the Laplacian on an Indefinite Riemannian Manifold

Inspired by Sunada’s problem, we find a six dimensional, noncompact Γ-periodic Riemannian manifold that admits countably many discrete spectra of the Laplacian. This manifold also carries a three dimensional complex structure with indefinite Kähler metric. We observe a hidden symmetry in the sense that the automorphism group of the indefinite Kähler metric is larger than the group of Riemannian isometries. This very symmetry breaks a path to the theory of discontinuous groups for non-Riemannian manifolds and the theory of discrete decomposable branching laws of unitary representations.

[1]  B. Orsted,et al.  Branching Laws for Some Unitary Representations of SL(4,R) , 2008, 0802.0974.

[2]  Toshiyuki Kobayashi,et al.  Compact Clifford-Klein forms of symmetric spaces -- revisited , 2005, math/0509543.

[3]  Toshiyuki Kobayashi Branching Problems of Unitary Representations , 2003, math/0304326.

[4]  Toshiyuki Kobayashi Discrete decomposability of the restriction of A_q(λ)with respect to reductive subgroups II-micro-local analysis and asymptotic K-support , 1998 .

[5]  T. Oda,et al.  A vanishing theorem for modular symbols on locally symmetric spaces , 1998 .

[6]  Toshiyuki Kobayashi Discrete decomposability of the restriction of Aq(λ) with respect to reductive subgroups III. Restriction of Harish-Chandra modules and associated varieties , 1998 .

[7]  Y. Benoist Actions propres sur les espaces homogenes reductifs , 1996 .

[8]  Toshiyuki Kobayashi Discrete decomposability of the restriction ofAq(λ) with respect to reductive subgroups and its applications , 1994 .

[9]  Toshiyuki Kobayashi Proper action on a homogeneous space of reductive type , 1989 .

[10]  M. Gromov,et al.  Non-arithmetic groups in lobachevsky spaces , 1987 .

[11]  Mogens Flensted-Jensen,et al.  Discrete series for semisimple symmetric spaces , 1980 .

[12]  W. Rossmann Analysis on real hyperbolic spaces , 1978 .

[13]  W. Schmid,et al.  A proof of Blattner's conjecture , 1976 .

[14]  È. Vinberg,et al.  DISCRETE GROUPS GENERATED BY REFLECTIONS IN LOBAČEVSKIĬ SPACES , 1967 .

[15]  Toshiyuki Kobayashi Restrictions of Unitary Representations of Real Reductive Groups , 2005 .

[16]  V. Varadarajan,et al.  The Mathematical Legacy of Harish-Chandra , 2000 .

[17]  S. Kaneyuki Pseudo-Hermitian Symmetric Spaces , 2000 .

[18]  B. Gross,et al.  Restriction of small discrete series represen-tations to symmetric subgroups , 2000 .

[19]  Toshiyuki Kobayashi Harmonic analysis on homogeneous manifolds of reductive type and unitary representation theory , 1998 .

[20]  G. Margulis Existence of compact quotients of homogeneous spaces, measurably proper actions, and decay of matrix coefficients , 1997 .

[21]  R. Zimmer Discrete groups and non-Riemannian homogeneous spaces , 1994 .

[22]  Kaoru Ono,et al.  Periodic Schrödinger Operators on a Manifold , 1989 .

[23]  S. Helgason Groups and geometric analysis , 1984 .

[24]  V. Varadarajan Harmonic analysis on real reductive groups , 1977 .

[25]  W. Schmid On a Conjecture of Langlands , 1971 .

[26]  A. Borel Compact Clifford-Klein forms of symmetric spaces , 1963 .

[27]  E. Calabi,et al.  Relativistic Space Forms , 1962 .

[28]  M. Berger Les espaces symétriques noncompacts , 1957 .