Asymptotic Equivalence of Conservative Value-at-Risk- and Expected Shortfall-Based Capital Charges

We show that the conservative estimate of the value-at-risk (VaR) for the sum of d random losses with given identical marginals and finite mean is equivalent to the corresponding conservative estimate of the expected shortfall in the limit, as the number of risks becomes arbitrarily large. Examples of interest in quantitative risk management show that the equivalence also holds for relatively small and inhomogeneous risk portfolios. When the individual random losses have infinite first moment, we show that VaR can be arbitrarily large with respect to the corresponding VaR estimate for comonotonic risks if the risk portfolio is large enough.

[1]  Z. Landsman,et al.  Economic Capital Allocations for Non-Negative Portfolios of Dependent Risks , 2007 .

[2]  Paul Embrechts,et al.  Infinite-mean models and the LDA for operational risk , 2006 .

[3]  Hélène Cossette,et al.  TVaR-based capital allocation with copulas , 2009 .

[4]  P. Embrechts,et al.  Model Uncertainty and VaR Aggregation , 2013 .

[5]  H. Robbins,et al.  A class of dependent random variables and their maxima , 1978 .

[6]  Ludger Rüschendorf,et al.  Sharp Bounds for Sums of Dependent Risks , 2013, J. Appl. Probab..

[7]  Steven Vanduffel,et al.  Some Results on the Cte Based Capital Allocation Rule , 2006 .

[8]  Stanislav Uryasev,et al.  Conditional Value-at-Risk for General Loss Distributions , 2002 .

[9]  R. Rockafellar,et al.  Conditional Value-at-Risk for General Loss Distributions , 2001 .

[10]  Gianluca Antonini,et al.  Challenges and pitfalls in measuring operational risk from loss data , 2009 .

[11]  Xianhua Peng,et al.  The Fundamental Review of the Trading Book , 2013 .

[12]  Paul Embrechts,et al.  Bounds for Functions of Dependent Risks , 2006, Finance Stochastics.

[13]  Ludger Rüschendorf,et al.  On optimal portfolio diversification with respect to extreme risks , 2010, Finance Stochastics.

[14]  S. Foss,et al.  An Introduction to Heavy-Tailed and Subexponential Distributions , 2011 .

[15]  S. Kusuoka On law invariant coherent risk measures , 2001 .

[16]  Giovanni Puccetti,et al.  Sharp bounds on the expected shortfall for a sum of dependent random variables , 2013 .

[17]  Qihe Tang,et al.  Asymptotics for Risk Capital Allocations Based on Conditional Tail Expectation , 2011 .

[18]  Emiliano A. Valdez,et al.  Optimal Capital Allocation Principles , 2005 .

[19]  D. Tasche,et al.  On the coherence of expected shortfall , 2001, cond-mat/0104295.