GEOMETRICAL CONDITIONS FOR OBSERVER ERROR LINEARIZATION VIA 0 → 1, … → (N – 2) – ∨

Abstract This paper gives sufficient geometrical conditions which guarantee the existence, via integrators, of an immersion in order to transform a nonlinear system into a canonical normal form up to a vector field which depends only on the output and its integral.

[1]  Arthur J. Krener,et al.  Linearization by output injection and nonlinear observers , 1983 .

[2]  D. Boutat,et al.  Observability quadratic characteristic numbers , 2003, 42nd IEEE International Conference on Decision and Control (IEEE Cat. No.03CH37475).

[3]  K. Furuta,et al.  On time scaling for nonlinear systems: Application to linearization , 1986 .

[4]  Driss Boutat,et al.  Geometrical conditions for observer error linearization with a diffeomorphism on the outputs , 2007 .

[5]  Kwanghee Nam,et al.  An approximate nonlinear observer with polynomial coordinate transformation maps , 1997, IEEE Trans. Autom. Control..

[6]  H. Hammouri,et al.  Observer Error Linearization Multi-Output Depending , 2006, Proceedings of the 45th IEEE Conference on Decision and Control.

[7]  D. Boutat,et al.  Quadratic observability normal form , 2001, Proceedings of the 40th IEEE Conference on Decision and Control (Cat. No.01CH37228).

[8]  A. Krener,et al.  Nonlinear observers with linearizable error dynamics , 1985 .