LPV Subspace Identification for Robust Fault Detection using a Set-Membership Approach: Application to the Wind Turbine Benchmark

This paper focuses on robust fault detection for Linear Parameter Varying (LPV) systems using a set-membership approach. Since most of models which represent real systems are subject to modeling errors, standard fault detection (FD) LPV methods should be extended to be robust against model uncertainty. To solve this robust FD problem, a set-membership approach based on an interval predictor is used considering a bounded description of the modeling uncertainty. Satisfactory results of the proposed approach have been obtained using several fault scenarios in the pitch subsystem considered in the wind turbine benchmark introduced in IFAC SAFEPROCESS 2009.

[1]  P. Heuberger,et al.  Discrete time LPV I/O and state space representations, differences of behavior and pitfalls of interpolation , 2007, 2007 European Control Conference (ECC).

[2]  Peter Fogh Odgaard,et al.  Results of a wind turbine FDI competition , 2012 .

[3]  Christophe Aubrun,et al.  Set-point reconfiguration approach for the FTC of wind turbines , 2011 .

[4]  Christophe Aubrun,et al.  Active Fault Tolerant approach for wind turbines , 2011, 2011 International Conference on Communications, Computing and Control Applications (CCCA).

[5]  Joaquim Blesa Izquierdo,et al.  Fault diagnosis of wind turbines using a set-membership approach , 2011 .

[6]  Michel Verhaegen,et al.  Subspace IDentification of MIMO LPV systems: The PBSID approach , 2008, 2008 47th IEEE Conference on Decision and Control.

[7]  Eduardo F. Camacho,et al.  Bounded error identification of systems with time-varying parameters , 2004, 2004 43rd IEEE Conference on Decision and Control (CDC) (IEEE Cat. No.04CH37601).

[8]  Yoshito Ohta,et al.  A local approach to LPV-identification of a Twin Rotor MIMO System , 2011 .

[9]  M. V. Iordache,et al.  Diagnosis and Fault-Tolerant Control , 2007, IEEE Transactions on Automatic Control.

[10]  Leonid M. Fridman,et al.  Interval estimation for LPV systems applying high order sliding mode techniques , 2012, Autom..

[11]  Vicenç Puig,et al.  Identification for passive robust fault detection using zonotope‐based set‐membership approaches , 2011 .

[12]  Peter Fogh Odgaard,et al.  Fault-Tolerant Control of Wind Turbines: A Benchmark Model , 2009, IEEE Transactions on Control Systems Technology.

[13]  Christophe Aubrun,et al.  LPV model-based fault detection: Application to wind turbine benchmark , 2015, 2015 7th International Conference on Modelling, Identification and Control (ICMIC).

[14]  Michel Verhaegen,et al.  Fault detection and estimation based on closed-loop subspace identification for linear parameter varying systems , 2009 .

[15]  M. Verhaegen,et al.  LPV subspace identification using a novel nuclear norm regularization method , 2011, Proceedings of the 2011 American Control Conference.

[16]  Vicenç Puig,et al.  Passive Robust Fault Detection of Dynamic Processes Using Interval Models , 2008, IEEE Transactions on Control Systems Technology.

[17]  Jakob Stoustrup,et al.  Robust and fault-tolerant linear parameter-varying control of wind turbines , 2011 .

[18]  Michel Verhaegen,et al.  Subspace identification of Bilinear and LPV systems for open- and closed-loop data , 2009, Autom..

[19]  Edouard Laroche,et al.  Identification of a flexible robot manipulator using a linear parameter-varying descriptor state-space structure , 2011, IEEE Conference on Decision and Control and European Control Conference.

[20]  M. N. Abdelkrim,et al.  Two-level Active Fault Tolerant Control approach , 2011, Eighth International Multi-Conference on Systems, Signals & Devices.

[21]  Vincent Verdult,et al.  Kernel methods for subspace identification of multivariable LPV and bilinear systems , 2005, Autom..

[22]  Denis V. Efimov,et al.  Control of Nonlinear and LPV Systems: Interval Observer-Based Framework , 2013, IEEE Transactions on Automatic Control.