Geometric ergodicity and the spectral gap of non-reversible Markov chains
暂无分享,去创建一个
[1] D. Vere-Jones. Markov Chains , 1972, Nature.
[2] R. C. Bradley. Information regularity and the central limit question , 1983 .
[3] E. Nummelin. General irreducible Markov chains and non-negative operators: List of symbols and notation , 1984 .
[4] T. Stephenson. Image analysis , 1992, Nature.
[5] D. Whittaker,et al. A Course in Functional Analysis , 1991, The Mathematical Gazette.
[6] A. Sokal,et al. Bounds on the ² spectrum for Markov chains and Markov processes: a generalization of Cheeger’s inequality , 1988 .
[7] P. Diaconis,et al. Geometric Bounds for Eigenvalues of Markov Chains , 1991 .
[8] J. A. Fill. Eigenvalue bounds on convergence to stationarity for nonreversible markov chains , 1991 .
[9] P. Diaconis,et al. COMPARISON THEOREMS FOR REVERSIBLE MARKOV CHAINS , 1993 .
[10] Richard L. Tweedie,et al. Markov Chains and Stochastic Stability , 1993, Communications and Control Engineering Series.
[11] S. Meyn,et al. Computable Bounds for Geometric Convergence Rates of Markov Chains , 1994 .
[12] J. Rosenthal. Minorization Conditions and Convergence Rates for Markov Chain Monte Carlo , 1995 .
[13] James Allen Fill,et al. THE MOVE-TO-FRONT RULE FOR SELF-ORGANIZING LISTS WITH MARKOV DEPENDENT REQUESTS· , 1995 .
[14] J. Rosenthal. Correction: Minorization Condition and Convergence Rates for Markov Chain Monte Carlo , 1995 .
[15] Persi Diaconis,et al. What do we know about the Metropolis algorithm? , 1995, STOC '95.
[16] Gerhard Winkler,et al. Image analysis, random fields and dynamic Monte Carlo methods: a mathematical introduction , 1995, Applications of mathematics.
[17] David Dyte,et al. On the move-to-front scheme with Markov dependent requests , 1997 .
[18] J. Rosenthal,et al. Geometric Ergodicity and Hybrid Markov Chains , 1997 .
[19] Gareth O. Roberts,et al. Convergence assessment techniques for Markov chain Monte Carlo , 1998, Stat. Comput..
[20] Leszek Wojnar,et al. Image Analysis , 1998 .
[21] O. Junge,et al. On the Approximation of Complicated Dynamical Behavior , 1999 .
[22] Y. Peres,et al. Broadcasting on trees and the Ising model , 2000 .
[23] John Odentrantz,et al. Markov Chains: Gibbs Fields, Monte Carlo Simulation, and Queues , 2000, Technometrics.
[24] Radford M. Neal,et al. ANALYSIS OF A NONREVERSIBLE MARKOV CHAIN SAMPLER , 2000 .
[25] R. Tweedie,et al. Geometric L 2 and L 1 convergence are equivalent for reversible Markov chains , 2001, Journal of Applied Probability.
[26] S. Meyn,et al. Spectral theory and limit theorems for geometrically ergodic Markov processes , 2002, math/0209200.
[27] Persi Diaconis,et al. MATHEMATICAL DEVELOPMENTS FROM THE ANALYSIS OP RIFFLE SHUFFLING , 2003 .
[28] S. Meyn,et al. Phase transitions and metastability in Markovian and molecular systems , 2004 .
[29] Olle Häggström,et al. Acknowledgement of priority concerning ``On the central limit theorem for geometrically ergodic Markov chains'' , 2006 .
[30] Ravi Montenegro,et al. Mathematical Aspects of Mixing Times in Markov Chains , 2006, Found. Trends Theor. Comput. Sci..
[31] Olle Häggström,et al. On the central limit theorem for geometrically ergodic Markov chains , 2005 .
[32] S. Meyn,et al. Large Deviations Asymptotics and the Spectral Theory of Multiplicatively Regular Markov Processes , 2005, math/0509310.
[33] Metropolis : Le jour où l’étoile probabilité entra dans le champ gravitationnel de la galaxie microlocale , 2007 .
[34] Persi Diaconis,et al. The Markov chain Monte Carlo revolution , 2008 .
[35] P. Diaconis,et al. Gibbs sampling, exponential families and orthogonal polynomials , 2008, 0808.3852.
[36] $L^{2}$-spectral gaps for time discrete reversible Markov chains , 2009, 0908.0897.
[37] $L^{2}$-spectral gaps, weak-reversible and very weak-reversible Markov chains , 2009, 0908.0888.
[38] Rutger van Haasteren,et al. Gibbs Sampling , 2010, Encyclopedia of Machine Learning.