Real-Time Object Recognition with Neuro-Fuzzy Controlled Workload-Aware Task Pipelining

A proposed object recognition processor lightens its workload by estimating global region-of-interest features. A neuro-fuzzy controller performs intelligent ROI estimation by mimicking the human visual system, then manages the processor's overall pipeline stages using workload-aware task scheduling and applied database size control. The NFC performs workload-aware dynamic power management to reduce the proposed processor's power consumption.

[1]  Joo-Young Kim,et al.  A 125 GOPS 583 mW Network-on-Chip Based Parallel Processor With Bio-Inspired Visual Attention Engine , 2009, IEEE Journal of Solid-State Circuits.

[2]  Shorin Kyo,et al.  ISSCC 2003 / SESSION 2 / MULTIMEDIA SIGNAL PROCESSING / PAPER 2.6 2.6 A 51.2GOPS Scalable Video Recognition Processor for Intelligent Cruise Control Based on a Linear Array of 128 4-Way VLIW Processing Elements , 2001 .

[3]  G LoweDavid,et al.  Distinctive Image Features from Scale-Invariant Keypoints , 2004 .

[4]  Donghyun Kim,et al.  A 125GOPS 583mW Network-on-Chip Based Parallel Processor with Bio-inspired Visual-Attention Engine , 2008, 2008 IEEE International Solid-State Circuits Conference - Digest of Technical Papers.

[5]  Christof Koch,et al.  A Model of Saliency-Based Visual Attention for Rapid Scene Analysis , 2009 .

[6]  Hoi-Jun Yoo,et al.  A 22.8GOPS 2.83mW neuro-fuzzy Object Detection Engine for fast multi-object recognition , 2009, 2009 Symposium on VLSI Circuits.

[7]  Donghyun Kim,et al.  An 81.6 GOPS Object Recognition Processor Based on NoC and Visual Image Processing Memory , 2007, 2007 IEEE Custom Integrated Circuits Conference.

[8]  I. Kuroda,et al.  A 51.2 GOPS scalable video recognition processor for intelligent cruise control based on a linear array of 128 4-way VLIW processing elements , 2003, 2003 IEEE International Solid-State Circuits Conference, 2003. Digest of Technical Papers. ISSCC..

[9]  Bomjun Kwon,et al.  Parallelization of the Scale-Invariant Keypoint Detection Algorithm for Cell Broadband Engine Architecture , 2008, 2008 5th IEEE Consumer Communications and Networking Conference.

[10]  R.P. Kleihorst,et al.  Xetal-II: A 107 GOPS, 600 mW Massively Parallel Processor for Video Scene Analysis , 2008, IEEE Journal of Solid-State Circuits.

[11]  Paul Wielage,et al.  XETAL-II: A 107 GOPS, 600mW Massively-Parallel Processor for Video Scene Analysis , 2007, 2007 IEEE International Solid-State Circuits Conference. Digest of Technical Papers.

[12]  Cordelia Schmid,et al.  3D Object Modeling and Recognition Using Local Affine-Invariant Image Descriptors and Multi-View Spatial Constraints , 2006, International Journal of Computer Vision.

[13]  Joo-Young Kim,et al.  The brain mimicking Visual Attention Engine: An 80×60 digital Cellular Neural Network for rapid global feature extraction , 2008, 2008 IEEE Symposium on VLSI Circuits.

[14]  Hoi-Jun Yoo,et al.  A 66fps 3 8mW nearest neighbor matching processor with hierarchical VQ algorithm for real-time object recognition , 2008, 2008 IEEE Asian Solid-State Circuits Conference.

[15]  Hoi-Jun Yoo,et al.  A 201.4 GOPS 496 mW Real-Time Multi-Object Recognition Processor With Bio-Inspired Neural Perception Engine , 2009, IEEE Journal of Solid-State Circuits.

[16]  Qi Zhang,et al.  SIFT implementation and optimization for multi-core systems , 2008, 2008 IEEE International Symposium on Parallel and Distributed Processing.

[17]  Robert C. Aitken,et al.  Low Power Methodology Manual - for System-on-Chip Design , 2007 .

[18]  Shorin Kyo,et al.  A low-cost mixed-mode parallel processor architecture for embedded systems , 2007, ICS '07.

[19]  E. Capaldi,et al.  The organization of behavior. , 1992, Journal of applied behavior analysis.

[20]  Pietro Perona,et al.  Selective visual attention enables learning and recognition of multiple objects in cluttered scenes , 2005, Comput. Vis. Image Underst..

[21]  Sameer A. Nene,et al.  Columbia Object Image Library (COIL100) , 1996 .

[22]  Deborah Estrin,et al.  Exploring Tradeoffs in Accuracy, Energy and Latency of Scale Invariant Feature Transform in Wireless Camera Networks , 2007, 2007 First ACM/IEEE International Conference on Distributed Smart Cameras.