Conceptual Analysis in a computer-assisted framework: mind in Peirce

Conceptual Analysis (CA) is a matter-of-course practice for philosophers and other scholars in the humanities. Exploring one author’s corpus of texts in order to discover the various properties of a concept is a classic example of CA. Recently, a corpus-based computational framework for CA has been emerging in response to the methodological challenges brought about by the massive digitization of texts. In this framework, CA is approached by implementing a computer-assisted text analysis method, within which algorithms are used to support the various cognitive operations involved in CA. In this article, we focus on the retrieval of relevant text segments for analysis. However, this is a complex issue within a computational framework, since the relation between concept and natural language depends on several semantic phenomena, including synonymy , polysemy, and contextual modulation . The main contribution of this article is methodological because it explores the computational approach to CA. We present three algorithmic methods, which identify relevant text segments while taking into account various semantic phenomena. The results show the potential of computer-assisted CA, thereby highlighting the need to overcome the limitations of these first experiments. An additional contribution of this work takes the form of knowledge transfer from Artificial Intelligence to the Humanities.

[1]  J. Danis L'analyse conceptuelle de textes assistée par ordinateur (LACTAO) : une expérimentation appliquée au concept d'évolution dans l'oeuvre d'Henri Bergson , 2012 .

[2]  S. Laurence,et al.  Concepts: Core Readings , 1999 .

[3]  D. Chalmers,et al.  Conceptual analysis and reductive explanation , 2001 .

[4]  Sebastian Thrun,et al.  Text Classification from Labeled and Unlabeled Documents using EM , 2000, Machine Learning.

[5]  Peter Norvig,et al.  Artificial Intelligence: A Modern Approach , 1995 .

[6]  G. Ryle,et al.  The concept of mind. , 2004, The International journal of psycho-analysis.

[7]  Ismaïl Biskri,et al.  Classification and Categorization in Computer Assisted Reading and Analysis of Texts , 2005 .

[8]  Drew McDermott,et al.  Introduction to artificial intelligence , 1986, Addison-Wesley series in computer science.

[9]  Donald Davidson,et al.  Thought and Talk , 2001 .

[10]  J. Firth,et al.  Papers in linguistics, 1934-1951 , 1957 .

[11]  J. Meunier,et al.  CoFiH : A heuristic for concept discovery in computer-assisted conceptual analysis , 2016 .

[12]  Katrin Erk,et al.  Vector Space Models of Word Meaning and Phrase Meaning: A Survey , 2012, Lang. Linguistics Compass.

[13]  Maxime B. Sainte-Marie,et al.  Darwin Between the Lines : A Computer-Assisted Analysis of the Concept of Evolution in The Origin of Species , 2010 .

[14]  P. Rousseeuw Silhouettes: a graphical aid to the interpretation and validation of cluster analysis , 1987 .

[15]  Chris Reed Proceedings of the Third Workshop on Argument Mining (ArgMining2016) , 2016 .

[16]  David M Williams,et al.  The confounded self-efficacy construct: conceptual analysis and recommendations for future research , 2016, Health psychology review.

[17]  Jan W. Amtrup,et al.  Sentence boundary detection: a comparison of paradigms for improving MT quality , 2001, MTSUMMIT.

[18]  G. Murphy,et al.  The Big Book of Concepts , 2002 .

[19]  Sabine Schulte im Walde,et al.  Uncovering Distributional Differences between Synonyms and Antonyms in a Word Space Model , 2013, IJCNLP.

[20]  Michael McGill,et al.  Introduction to Modern Information Retrieval , 1983 .

[21]  Bernard Victorri,et al.  La polysémie : un artefact de la linguistique ? , 1997 .

[22]  Wanli Zuo,et al.  An Integration of CoTraining and Affinity Propagation for PU Text Classification , 2009, 2009 International Conference on Computer Engineering and Technology.

[23]  Chris Reed,et al.  Mining Arguments From 19th Century Philosophical Texts Using Topic Based Modelling , 2014, ArgMining@ACL.

[24]  Graeme Hirst,et al.  Evaluating WordNet-based Measures of Lexical Semantic Relatedness , 2006, CL.

[25]  Dag Prawitz Meaning and experience , 2005, Synthese.

[26]  P. Skagestad Peirce's Inkstand as an external embodiment of mind , 1999 .

[27]  U. Eco Semiotica e filosofia del linguaggio , 1984 .

[28]  Tuomas Forsberg Normative Power Europe, Once Again: A Conceptual Analysis of an Ideal Type , 2011 .

[29]  Michael Beaney,et al.  The Analytic Turn : Analysis in Early Analytic Philosophy and Phenomenology , 2007 .

[30]  Beatrice Santorini,et al.  Building a Large Annotated Corpus of English: The Penn Treebank , 1993, CL.

[31]  Hui Xiong,et al.  Understanding of Internal Clustering Validation Measures , 2010, 2010 IEEE International Conference on Data Mining.

[32]  Hans-Peter Kriegel,et al.  Clustering for Mining in Large Spatial Databases , 1998, Künstliche Intell..

[33]  I. Rumfitt,et al.  Making it Explicit: Reasoning, Representing, and Discursive Commitment. , 1997 .

[34]  Roberto Navigli,et al.  Word sense disambiguation: A survey , 2009, CSUR.

[35]  C. Williams,et al.  The Seas of Language , 1995 .

[36]  Zellig S. Harris,et al.  Distributional Structure , 1954 .

[37]  E. Slingerland,et al.  The Distant Reading of Religious Texts: A “Big Data” Approach to Mind-Body Concepts in Early China , 2017 .

[38]  Hans-Peter Kriegel,et al.  A Density-Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise , 1996, KDD.

[39]  Anil K. Jain Data clustering: 50 years beyond K-means , 2008, Pattern Recognit. Lett..

[40]  M. Allard,et al.  Analyse conceptuelle du Coran sur cartes perforées , 1963 .

[41]  Ted Pedersen,et al.  Word Sense Discrimination by Clustering Contexts in Vector and Similarity Spaces , 2004, CoNLL.

[42]  J. Moor,et al.  The digital phoenix : how computers are changing philosophy , 1998 .

[43]  CONCORDANCES ET CONCORDANCIERS DE L'ART DU BON KWAC , 2006 .

[44]  Dekang Lin,et al.  Automatic Retrieval and Clustering of Similar Words , 1998, ACL.

[45]  M C Neale,et al.  Endophenotype: a conceptual analysis , 2010, Molecular Psychiatry.

[46]  Marion Kee,et al.  Analysis , 2004, Machine Translation.

[47]  D. Davidson Inquiries Into Truth and Interpretation , 1984 .

[48]  Gerard Salton,et al.  The SMART Retrieval System—Experiments in Automatic Document Processing , 1971 .

[49]  Avrim Blum,et al.  The Bottleneck , 2021, Monopsony Capitalism.

[50]  Jason Eisner,et al.  Lexical Semantics , 2020, The Handbook of English Linguistics.

[51]  K. Himma From Metaphysics to Ethics: A Defence of Conceptual Analysis , 2003 .

[52]  Eric Margolis,et al.  Concepts and Conceptual Analysis , 2003 .

[53]  Jens Kipper A Two-Dimensionalist Guide to Conceptual Analysis , 2012 .

[54]  R. Sternberg,et al.  Complex Problem Solving : Principles and Mechanisms , 1992 .

[55]  Maarten Sap,et al.  Extracting Human Temporal Orientation from Facebook Language , 2015, NAACL.

[56]  Dan I. Moldovan,et al.  Text Mining for Causal Relations , 2002, FLAIRS.

[57]  G. L. Collected Papers , 1912, Nature.

[58]  C. Nilholm,et al.  Conceptual diversities and empirical shortcomings – a critical analysis of research on inclusive education , 2014 .

[59]  Donald Hindle,et al.  Noun Classification From Predicate-Argument Structures , 1990, ACL.