Modeling hysteresis, creep, and dynamic effects for piezoactuator-based nano-positioning systems

In this paper, a model characterizing hysteresis, creep, and dynamic effects is proposed for simulation and control system design of piezoactuator-based nano-positioning system. Fractional-order integrator is employed to characterize the creep behavior at low frequencies. Maxwell resistive capacitor (MRC) model is used to capture the rate-independent hysteresis lying in the electric domain between the applied voltage and the surface charge. The remaining high-frequency dynamics, including the dynamics of the mechanical structure, the voltage amplifier, and the capacitive sensor, are described by a high-order linear system. The proposed model is verified experimentally.

[1]  Michael Goldfarb,et al.  A Lumped Parameter Electromechanical Model for Describing the Nonlinear Behavior of Piezoelectric Actuators , 1997 .

[2]  D. Croft,et al.  Creep, hysteresis, and vibration compensation for piezoactuators: atomic force microscopy application , 2000, Proceedings of the 2000 American Control Conference. ACC (IEEE Cat. No.00CH36334).

[3]  Michael Goldfarb,et al.  Modeling Piezoelectric Stack Actuators for Control of Mlcromanlpulatlon , 2022 .

[4]  Sarangapani Jagannathan,et al.  Creep and Hysteresis Compensation for Nanomanipulation Using Atomic Force Microscope , 2009 .

[5]  S O R Moheimani,et al.  Invited review article: high-speed flexure-guided nanopositioning: mechanical design and control issues. , 2012, The Review of scientific instruments.

[6]  Philippe Lutz,et al.  Complete Open Loop Control of Hysteretic, Creeped, and Oscillating Piezoelectric Cantilevers , 2010, IEEE Transactions on Automation Science and Engineering.

[7]  Ulrich Gabbert,et al.  Feedback/feedforward control of hysteresis-compensated piezoelectric actuators for high-speed scanning applications , 2015 .

[8]  Si-Lu Chen,et al.  Discrete Composite Control of Piezoelectric Actuators for High-Speed and Precision Scanning , 2013, IEEE Transactions on Industrial Informatics.

[9]  H. Tzou,et al.  Smart Materials, Precision Sensors/Actuators, Smart Structures, and Structronic Systems , 2004 .

[10]  K. Kuhnen,et al.  Inverse control of systems with hysteresis and creep , 2001 .

[11]  S. Devasia,et al.  Feedforward control of piezoactuators in atomic force microscope systems , 2009, IEEE Control Systems.

[12]  Hartmut Janocha,et al.  Adaptive Compensation of Hysteretic and Creep Non-linearities in Solid-state Actuators , 2010 .

[13]  Aristides A. G. Requicha,et al.  Compensation of Scanner Creep and Hysteresis for AFM Nanomanipulation , 2008, IEEE Transactions on Automation Science and Engineering.

[14]  Spilios D. Fassois,et al.  Friction Identification Based Upon the LuGre and Maxwell Slip Models , 2009, IEEE Transactions on Control Systems Technology.

[15]  Ming-Jyi Jang,et al.  Modeling and control of a piezoelectric actuator driven system with asymmetric hysteresis , 2009, J. Frankl. Inst..

[16]  Ulrich Gabbert,et al.  Hysteresis and creep modeling and compensation for a piezoelectric actuator using a fractional-order Maxwell resistive capacitor approach , 2013 .

[17]  Limin Zhu,et al.  Real-time inverse hysteresis compensation of piezoelectric actuators with a modified Prandtl-Ishlinskii model. , 2012, The Review of scientific instruments.

[18]  S. Westerlund Dead matter has memory , 1991 .

[19]  Branislav Borovac,et al.  Parameter identification and hysteresis compensation of embedded piezoelectric stack actuators , 2011 .

[20]  Srinivasa M. Salapaka,et al.  Design methodologies for robust nano-positioning , 2005, IEEE Transactions on Control Systems Technology.

[21]  Santosh Devasia,et al.  Hysteresis, Creep, and Vibration Compensation for Piezoactuators: Feedback and Feedforward Control 1 , 2002 .

[22]  Jan Swevers,et al.  The generalized Maxwell-slip model: a novel model for friction Simulation and compensation , 2005, IEEE Transactions on Automatic Control.

[23]  Santosh Devasia,et al.  A Survey of Control Issues in Nanopositioning , 2007, IEEE Transactions on Control Systems Technology.

[24]  J. Shan,et al.  Creep modeling and identification for piezoelectric actuators based on fractional-order system , 2013 .

[25]  Murti V. Salapaka,et al.  High bandwidth nano-positioner: A robust control approach , 2002 .