Modeling hysteresis, creep, and dynamic effects for piezoactuator-based nano-positioning systems
暂无分享,去创建一个
[1] Michael Goldfarb,et al. A Lumped Parameter Electromechanical Model for Describing the Nonlinear Behavior of Piezoelectric Actuators , 1997 .
[2] D. Croft,et al. Creep, hysteresis, and vibration compensation for piezoactuators: atomic force microscopy application , 2000, Proceedings of the 2000 American Control Conference. ACC (IEEE Cat. No.00CH36334).
[3] Michael Goldfarb,et al. Modeling Piezoelectric Stack Actuators for Control of Mlcromanlpulatlon , 2022 .
[4] Sarangapani Jagannathan,et al. Creep and Hysteresis Compensation for Nanomanipulation Using Atomic Force Microscope , 2009 .
[5] S O R Moheimani,et al. Invited review article: high-speed flexure-guided nanopositioning: mechanical design and control issues. , 2012, The Review of scientific instruments.
[6] Philippe Lutz,et al. Complete Open Loop Control of Hysteretic, Creeped, and Oscillating Piezoelectric Cantilevers , 2010, IEEE Transactions on Automation Science and Engineering.
[7] Ulrich Gabbert,et al. Feedback/feedforward control of hysteresis-compensated piezoelectric actuators for high-speed scanning applications , 2015 .
[8] Si-Lu Chen,et al. Discrete Composite Control of Piezoelectric Actuators for High-Speed and Precision Scanning , 2013, IEEE Transactions on Industrial Informatics.
[9] H. Tzou,et al. Smart Materials, Precision Sensors/Actuators, Smart Structures, and Structronic Systems , 2004 .
[10] K. Kuhnen,et al. Inverse control of systems with hysteresis and creep , 2001 .
[11] S. Devasia,et al. Feedforward control of piezoactuators in atomic force microscope systems , 2009, IEEE Control Systems.
[12] Hartmut Janocha,et al. Adaptive Compensation of Hysteretic and Creep Non-linearities in Solid-state Actuators , 2010 .
[13] Aristides A. G. Requicha,et al. Compensation of Scanner Creep and Hysteresis for AFM Nanomanipulation , 2008, IEEE Transactions on Automation Science and Engineering.
[14] Spilios D. Fassois,et al. Friction Identification Based Upon the LuGre and Maxwell Slip Models , 2009, IEEE Transactions on Control Systems Technology.
[15] Ming-Jyi Jang,et al. Modeling and control of a piezoelectric actuator driven system with asymmetric hysteresis , 2009, J. Frankl. Inst..
[16] Ulrich Gabbert,et al. Hysteresis and creep modeling and compensation for a piezoelectric actuator using a fractional-order Maxwell resistive capacitor approach , 2013 .
[17] Limin Zhu,et al. Real-time inverse hysteresis compensation of piezoelectric actuators with a modified Prandtl-Ishlinskii model. , 2012, The Review of scientific instruments.
[18] S. Westerlund. Dead matter has memory , 1991 .
[19] Branislav Borovac,et al. Parameter identification and hysteresis compensation of embedded piezoelectric stack actuators , 2011 .
[20] Srinivasa M. Salapaka,et al. Design methodologies for robust nano-positioning , 2005, IEEE Transactions on Control Systems Technology.
[21] Santosh Devasia,et al. Hysteresis, Creep, and Vibration Compensation for Piezoactuators: Feedback and Feedforward Control 1 , 2002 .
[22] Jan Swevers,et al. The generalized Maxwell-slip model: a novel model for friction Simulation and compensation , 2005, IEEE Transactions on Automatic Control.
[23] Santosh Devasia,et al. A Survey of Control Issues in Nanopositioning , 2007, IEEE Transactions on Control Systems Technology.
[24] J. Shan,et al. Creep modeling and identification for piezoelectric actuators based on fractional-order system , 2013 .
[25] Murti V. Salapaka,et al. High bandwidth nano-positioner: A robust control approach , 2002 .